RACAL INSTRUMENTS 1260-14C OPEN COLLECTOR DIGITAL I/O MODULE

PUBLICATION NO. 980673-012

EADS North America Defense Test and Services, Inc.
4 Goodyear, Irvine, CA 92618
Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
info@eads-nadefense.com
sales@eads-nadefense.com
helpdesk@eads-nadefense.com
http://www.eads-nadefense.com

PUBLICATION DATE: October 21, 2002
Copyright 1993 by EADS North America Defense Test and Services, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

THANK YOU FOR PURCHASING THIS EADS NORTH AMERICA DEFENSE TEST AND SERVICES PRODUCT

For this product, or any other EADS North America Defense Test and Services, Inc. product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:
http://www.eads-nadefense.com/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at
info@eads-nadefense.com

WARRANTY STATEMENT

All EADS North America Defense Test and Services, Inc. products are designed and manufactured to exacting standards and in full conformance to EADS ISO 9001:2000 processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without EADS North America Defense Test and Services, Inc. express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your EADS North America Defense Test and Services, Inc. customer service advisor. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@eads-nadefense.com	
Telephone:	+18007223262	(USA)
Fax:	+19498597309	(USA)

RETURN of PRODUCT

Authorization is required from EADS North America Defense Test and Services, Inc. before you send us your product for service or calibration. Call or contact the Customer Support Department at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at: helpdesk@eads-nadefense.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to EADS North America Defense Test and Services, Inc., and shall not, without express written permission of EADS North America Defense Test and Services, Inc., be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than EADS North America Defense Test and Services, Inc. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from EADS North America Defense Test and Services, Inc.

DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this handbook and any other instructions provided by Seller. EADS North America Defense Test and Services, Inc. products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the EADS North America Defense Test and Services, Inc. product could create a situation where personal injury or death could occur. Should Buyer purchase EADS North America Defense Test and Services, Inc. product for such unintended application, Buyer shall indemnify and hold EADS North America Defense Test and Services, Inc., its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.

Before operating this instrument:

1. Ensure the proper fuse is in place for the power source to operate.
2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until, performance is checked by qualified personnel.

Racal Instruments

EC Declaration of Conformity

We

Racal Instruments Inc.
4 Goodyear Street
Irvine, CA 92718
declare under sole responsibility that the
1260-14C Open-Collector Digital I/O Module, P/N 407164
conforms to the following Product Specifications:
Safety: EN61010-1:1993+A2:1995
EMC: EN61326:1997+A1:1998
Supplementary Information:
The above specifications are met when the product is installed in a Racal Instruments certified mainframe with faceplates installed over all unused slots, as applicable

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (modified by 93/68/EEC).

Irvine, CA, October 21, 2002
Engineering Director

This page was left intentionally blank.

Table Of Contents

Chapter 1 1-1
MODULE SPECIFICATION 1-1
Module Specification 1-1
Specifications 1-3
Pin Configuration 1-4
Chapter 2 2-1
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Reshipment Instructions 2-2
Option 01 Installation 2-2
Module Installation 2-2
Chapter 3 3-1
MODULE SPECIFIC SYNTAX 3-1
Asynchronous and Synchronous Modes of Operation 3-1
Asynchronous Mode 3-1
Synchronous Mode 3-2
Synchronous Mode Handshaking 3-3
Module Specific Syntax 3-5
Syntax Notations and Conventions 3-5
Definition of Commands 3-6
PDATAOUT Command 3-6
PSETUP command 3-8
READ command 3-9
RESET command 3-12
SETUP ARM command 3-12
SETUP BUSY command 3-13
SETUP CLKIN command 3-13
SETUP RD command 3-14
SETUP SYNC command 3-16
SETUP WR command 3-17
WRITE command 3-20
Synchronous Mode Example 3-24
Chapter 4 4-1
OPTIONAL HARNESS ASSEMBLIES 4-1
Chapter 5 5-1
PRODUCT SUPPORT 5-1
Product Support 5-1
Reshipment Instructions 5-1

List Of Figures

Figure 1-1, 1260-14C Block Diagram ...1-2
Figure 1-2, 1260-14C Front Panel and Pin Configuration...1-6
Figure 1-3, Allowable Package Power Dissipation of Output Stage ...1-11
Figure 1-4, $\mathrm{V}_{\text {ce }}$ (sat) as a Function of Collector Current..1-11

Figure 3-1, 1260-14C Input and Output Handshake Modes
3-4

List Of Tables

Table 1-1, 1260-14C Channels and Ports ..1-5
Table 1-2, 1260-14C Pins, Signals and Descriptions ...1-7

This page was left intentionally blank.

Chapter 1

MODULE SPECIFICATION

Module Specification

The 1260-14C provides 96 Open Collector (OC) I/O lines in twelve groups of 8 bits each. Each group of 8 bits (hereafter referred to as a port) can be read from or written to asynchronously using the commands READ and WRITE. Additionally, up to 12 ports may be grouped together and synchronously operated using an external clock for as many as 256 consecutive operations by using the appropriate SETUP commands. The last data previously written to or read from a port is retrieved by using the PDATAOUT command. The current state of the 1260-14C is determined by using the PSETUP command. Refer to the individual syntax descriptions for each command and the examples given later for the specifics regarding these operations.

The outputs of the 1260-14C are connected to an external voltage that provides inductive fly-back protection. If inductive loads are to be driven, the external voltage must be supplied to the module. Failure to do so may cause damage to the module's output stage. If protection for inductive voltage fly-back is unnecessary, $\mathrm{V}_{\text {ext }}$ does not need to be supplied to the module.

The 1260-14C allows twelve separate external voltages to be supplied to the module's front panel. These external voltages are supplied to the output stages on a byte-by-byte basis. This allows some flexibility as to the OC output voltages that are supported simultaneously by the module (see the 1260-14C Block Diagram). Also, the VXIbus supplied voltages (+5 V , +12 V , and +24 V) are used to pull up the output stage if the module is fitted with internal resistive pull-ups.

The 1260-14C includes provisions for the installation of internal pull-up resistors. This includes twelve 16-pin DIP sockets designed to accommodate standard 16-pin, eight resistor-isolated style DIP packages, such as CTS P/N 761-3-R10k or Bourns P/N 4116R-001-103. The 1260-14C contains no internal pull-up resistors at time of shipment.

It is recommended that outputs be pulled-up with $10 \mathrm{k} \Omega$ resistors if driving standard logic gates. Internal pull-ups are limited to a minimum value of $10 \mathrm{k} \Omega$ due to the amount of current available from the VXIbus supplies.

The output stage of the $1260-14 \mathrm{C}$ may sink up to 200 mA . The limitation to this is the power dissipation in the output stages of the IC. (See Figure 1-3 for the maximum allowable package power dissipation.) If many 200mA loads are to be driven, they should be distributed across the module's outputs for improved thermal management.

It should be noted that there is no tri-state capability on the 126014C. Since the outputs are open collector, they are placed in a pseudo tri-state by "driving" a 1 on the relevant channel. In this way, the channels are controlled on a bit-by-bit basis rather than a byte-by-byte basis as on the standard 1260-14.

Figure 1-1, 1260-14C Block Diagram

Specifications

User Connector
Number of I/O Channels
Configuration

Data Rate
Operating Modes

Input/Output

Two 50-pin IDC and two 60-pin IDC
96 Channels
I/O lines selected as either input or output on a pin-per-pin basis

Static to approximately 1 kHz
Asynchronous
Synchronous
Open Collector*

All outputs have inductive-load transient suppression diodes built in, and must be supplied with an external voltage source ($\mathrm{V}_{\mathrm{ext}}$) for this protection to be active.

CAUTION:

Damage to the driver's output may occur if a highly inductive load (i.e., relay coil drive) is driven without an external voltage ($\mathrm{V}_{\text {ext }}$) being applied to the module's drive cells.
$\mathrm{V}_{\text {ext }}$ may differ on a port-by-port basis, or can be jumpered across all the drivers. The factory setting is to connect each port with its corresponding $\mathrm{V}_{\text {ext }}$ pin where $\mathrm{V}_{\text {ext }}(1-12)$ are the user's input pins to the drivers. The outputs may also be internally pulled up if fitted with DIP resistor packs (this selection is also port- wide).

NOTE:
$\mathrm{V}_{\text {ext }}$ is limited to 1A per $\mathrm{V}_{\text {ext }}$ pin used. For example, the maximum current-carrying capability of a single $V_{\text {ext }}$ pin is 1A.

* A CMOS-compatible and LS TTL versions of the 1260-14C are also available.

Output Voltage
$V_{\text {out }}$ (High)
$\mathrm{V}_{\text {out }}$ (Low)
$5.0 \mathrm{~V}<=\mathrm{V}_{\text {oh }}<=32 \mathrm{~V}$ (max) $\leq 1.5 \mathrm{~V}$ at $\mathrm{l}_{\text {in } 10}=200 \mathrm{~mA}$

Input Voltage

$\mathrm{V}_{\text {in }}$ (High)	$\geq 2 \mathrm{~V}$
$\mathrm{~V}_{\text {in }}$ (Low)	$\leq 1.5 \mathrm{~V}$

$V_{\text {ih }}($ Max $)$	32 VDC
Input Resistance	>500k Ω
Cooling Requirement	
Airflow	1.2 liters/sec
Backpressure	$0.6 \mathrm{~mm} \mathrm{H} \mathrm{H}^{\mathrm{O}}$
Power Requirement (l_{pm})	
5 V	2.38A (4.78A with Option 01)
Weight	$2.69 \mathrm{lbs}(1.21 \mathrm{Kg}$)
	$2.97 \mathrm{lbs}(1.34 \mathrm{Kg}$ with Option 01)

Minimum Option 01 Firmware
Revision 17.1

CAUTION:
Damage to user's equipment or to the Digital I/O card could occur if the user enables an output driver (driver outputting a low) for a channel connected to a device that is attempting to drive the data line high.

Pin Configuration

The 1260-14C Digital I/O module has 96 channels, grouped as twelve 8-bit ports available at front panel connectors J1 through J4. Each port may be configured as an input or an output.

Refer to Figure 1-2 for the pin configurations of the 50 and 60 pin connectors on the front panel, and to Table 1-1 for correspondence between the physical channel assignments and the port numbers used in the command codes.

Refer to Table 1-2 for correspondence between the front panel pins and the signal names and descriptions.

Table 1-1, 1260-14C Channels and Ports

Channel No.	Port No.	External Pull-Up Voltage
$1-8$	0	$V_{\text {ext }} 1$
$9-16$	1	$V_{\text {ext }} 2$
$17-24$	2	$V_{\text {ext }} 3$
$25-32$	3	$V_{\text {ext }} 4$
$33-40$	4	$V_{\text {ext }} 5$
$41-48$	5	$V_{\text {ext }} 6$
$49-56$	6	$V_{\text {ext }} 7$
$57-64$	7	$V_{\text {ext }} 8$
$65-72$	8	$V_{\text {ext }} 9$
$73-80$	9	$V_{\text {ext }} 10$
$81-88$	10	$V_{\text {ext }} 11$
$89-96$	11	$V_{\text {ext }} 12$

Figure 1-2, 1260-14C Front Panel and Pin Configuration

Table 1-2, 1260-14C Pins, Signals and Descriptions

J1 Pin	Row A Signal	Description
1	CH 1	Channel 1 I/O
3	CH 2	Channel 2 I/O
5	CH 3	Channel 3 I/O
7	CH 4	Channel 4 I/O
.	.	.
.	.	.
.	.	.
45	CH 23	Channel 23 I/O
47	CH 24	Channel 24 I/O
49	BSY	BUSY Handshake output

J1 Pin	Row B Signal	Description
2	GND	Channel 1 RTN
4	GND	Channel 2 RTN
6	GND	Channel 3 RTN
8	GND	Channel 4 RTN
.	.	.
.	.	.
.	.	.
44	GND	Channel 22 RTN
46	GND	Channel 23 RTN
48	GND	Channel 24 RTN
50		BUSY Signal return

Table 1-2, 1260-14C Pins, Signals and Descriptions (continued)

J2 Pin	Row A Signal	Description
1	CH 25	Channel 25 I/O
3	CH 26	Channel 26 I/O
5	CH 27	Channel 27 I/O
7	CH 28	Channel 28 I/O
.	.	.
.	.	.
.	.	.
45	CH 47	Channel 47 I/O
47	CH 48	Channel 48 I/O
49	CLKIN	CLKIN Handshake input

J2 Pin	Row B Signal	Description
2	GND	Channel 25 RTN
4	GND	Channel 26 RTN
6	GND	Channel 27 RTN
8	GND	Channel 28 RTN
.	.	.
.	.	.
.	.	.
44	GND	Channel 46 RTN
46	GND	Channel 47 RTN
48	GND	Channel 48 RTN
50		CLKIN Signal return

Table 1-2, 1260-14C Pins, Signals and Descriptions (continued)

J3 Pin	Row A Signal	Description
1	CH 49	Channel 49 I/O
3	$\mathrm{CH50}$	Channel 50 I/O
5	$\mathrm{CH51}$	Channel 51 I/O
7	$\mathrm{CH52}$	Channel 52 I/O
.	.	.
.	.	.
.	.	.
45	$\mathrm{CH71}$	Channel 71 I/O
47	$\mathrm{~V}_{\text {ext }} \mathrm{I}$	Channel 72 I/O
49	$\mathrm{~V}_{\text {ext }} 2$	External Voltage 1
51	$\mathrm{~V}_{\text {ext }} 3$	External Voltage 2
53	$\mathrm{~V}_{\text {ext }} 4$	External Voltage 3
55	$\mathrm{~V}_{\text {ext }} 5$	External Voltage 4
57	$\mathrm{~V}_{\text {ext }} 6$	External Voltage 5
59		External Voltage 6

J3 Pin	Row B Signal	Description
2	GND	Channel 49 RTN
4	GND	Channel 50 RTN
6	GND	Channel 51 RTN
8	GND	Channel 52 RTN
.	.	.
.	.	.
.	GND	.
44	GND	Channel 70 RTN
46	GND	Channel 71 RTN
48	GND RTN	
50	GND	$V_{\text {ext }}$ 1 RTN
52	GND	$V_{\text {ext }}$ 2 RTN
54	GND	$V_{\text {ext }}$ 3 RTN
56	GND	$V_{\text {ext }}$ 4 RTN
58	GND	$V_{\text {ext }}$ 5 RTN
60	$V_{\text {ext }}$ 6 RTN	

Table 1-2, 1260-14C Pins, Signals and Descriptions (continued)

J4 Pin	Row A Signal	Description
1	CH 73	Channel 73 I/O
3	CH 74	Channel 74 I/O
5	CH 75	Channel 75 I/O
7	CH 76	Channel 76 I/O
.	.	.
.	.	.
.	.	.
45	CH 95	Channel 95 I/O
47	$\mathrm{VH}_{\text {ext }} 7$	Channel 96 I/O
49	$\mathrm{~V}_{\text {ext }} 8$	External Voltage 7
51	$\mathrm{~V}_{\text {ext }} 9$	External Voltage 8
53	$\mathrm{~V}_{\text {ext }} 10$	External Voltage 9
55	$\mathrm{~V}_{\text {ext }} 11$	External Voltage 10
57	$\mathrm{~V}_{\text {ext }} 12$	External Voltage 11
59		External Voltage 12

J4 Pin	Row B Signal	Description
2	GND	Channel 73 RTN
4	GND	Channel 74 RTN
6	GND	Channel 75 RTN
8	GND	Channel 76 RTN
.	.	.
.	.	.
.	GND	.
44	GND	Channel 94 RTN
46	GND	Channel 95 RTN
48	GND	$V_{\text {ext }} 7$ RTN
50	GND	$V_{\text {ext }}$ 8 RTN
52	GND	$V_{\text {ext }} 9 R T N$
54	GND	$V_{\text {ext }} 10 R T N$
56	GND	$V_{\text {ext }} 11 R T N$
58	$V_{\text {ext }} 12 R T N$	
60		

Figure 1-3, Allowable Package Power Dissipation of Output Stage

COLLECTOR CURRENT
AS A FUNCTION OF SATURATION VOLTAGE

Figure 1-4, $\mathrm{V}_{\text {ce }}$ (sat) as a Function of Collector Current

This page was left intentionally blank.

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

SENSITIVE ELECTRONIC DEVICES
DO NOT SHIP OR STORE NEAR STRONG ELECTROSTATIC, CTROMAGNETIC, MAGNETIC OR
RADIOACTIVE FIELDS

1. Remove the 1260-14C module and inspect it for damage. If any damage is apparent, inform the carrier immediately. Retain shipping carton and packing material for the carrier's inspection.
2. Verify that the pieces in the package you received contain the correct 1260-14C module option and the 1260-14C Users Manual. Notify EADS North America Defense Test and Services, Inc. if the module appears damaged in any way. Do not attempt to install a damaged module into a VXI chassis.
3. The $1260-14 \mathrm{C}$ module is shipped in an anti-static bag to prevent electrostatic damage to the module. Do not remove the module from the anti-static bag unless it is in a static-controlled area.

CAUTION:

Proper ESD handling procedures must always be used when packing, unpacking or installing any 1260 Series cards. Failure to do so may cause damage to the unit.

Reshipment Instructions

Option 01 Installation

Module Installation

1. Use the original packing when returning the switching module to EADS North America Defense Test and Services, Inc. for calibration or servicing. The original shipping carton and the instrument's plastic foam will provide the necessary support for safe reshipment.
2. If the original packing material is unavailable, wrap the switching module in an ESD Shielding bag and use plastic spray foam to surround and protect the instrument.
3. Reship in either the original or a new shipping carton.

Installation of the Option 01 into the $1260-14 \mathrm{C}$ is described in the Installation section of the 1260 Series VXI Switching Cards Manual (RII P/N 980673-999).

Installation of the 1260-14C Digital I/O Module into a VXIbus mainframe, including the setting of DIP switches, is described in the Installation section of the 1260 Series VXI Switching Cards Manual (RII P/N 980673-999). The ID byte DIP switches, SW1-5 and SW1-6, should be set to OFF.

Chapter 3

MODULE SPECIFIC SYNTAX

Asynchronous and Synchronous Modes of Operation

Each port on the 1260-14C can operate in either an asynchronous or a synchronous mode. The number of synchronous mode ports is modified by using the SETUP SYNC command. The default after power-up or reset is for all ports to be in the asynchronous mode. The current operating mode of the ports is determined at any time with the PSETUP command. See the syntax description of the PSETUP and SETUP SYNC commands for details and examples.

Asynchronous Mode

The asynchronous mode allows data to be read from or written to a port in response to a READ or WRITE command. The following restrictions apply to all asynchronous operations:

Those ports defined as asynchronous cannot participate in synchronous operations.

Asynchronous commands are not allowed on any port while synchronous operations are armed and waiting for clocks.

Asynchronous WRITE commands are valid on synchronous ports to allow the synchronous port to be preset to a starting value. Asynchronous READ commands are not allowed on synchronous ports.

Synchronous Mode

The synchronous mode of operation allows data to be read from or written to a port in response to a clock edge. Typically, this is done by:

1. Defining the test parameters and data via the various SETUP commands.
2. Arming the test via the SETUP <address>.ARM ON command.
3. Applying a series of TTL clock inputs to the CLKIN line until the last operation on all ports has been completed, causing the test to automatically disarm. It is also possible to manually disarm the test before it has completed all of the test vectors. This is done via the SETUP <address>.ARM OFF command.
4. Reading back the results using the PDATAOUT command.

The following restrictions apply to all synchronous operations:
Synchronous ports are always grouped together and are always the lowest numbered ports; i.e., the first synchronous port is always port 0 ; the second is always port 1, etc.

All ports not specified as synchronous are asynchronous by default.

A port may read or write during synchronous operations, but not both.

Once a synchronous test is set up, it must be armed before the unit enables the handshake lines.

Synchronous operations cannot be set up once the 126014 C is armed.

There is a maximum of 256 synchronous operations (referred to as vectors) per port.

All synchronous ports are clocked simultaneously; i.e., if five synchronous ports are defined, the first active edge of the clock causes the appropriate action to occur on all five ports.

Synchronous ports support the asynchronous WRITE command, but not the asynchronous READ command.

Synchronous Mode Handshaking

The module has a two-line handshake available for use in the synchronous mode. The first is the BUSY line, which is set by the 1260-14C when it is busy processing, and the second is the CLKIN line which the user toggles to clock the next synchronous operation. The user specifies the polarity of the BUSY line and the active edge of the CLKIN line by using the appropriate SETUP command. (Refer to Figure 3-1 for timing diagrams of the input and output handshaking modes available.) Both the BUSY and CLKIN lines are valid only when a synchronous operation is defined and armed.

NOTE:
Both the BUSY and the CLKIN lines are valid only when synchronous operations are defined and armed. Changes on the CLKIN line are ignored by the 1260-14C when the card is not armed. Spurious outputs on the BUSY line should also be ignored unless the unit is armed.

Figure 3-1, 1260-14C Input and Output Handshake Modes

Module Specific Syntax

The 1260-14C Digital I/O module supports the PDATAOUT, PSETUP, READ, RESET, SETUP, and WRITE commands. The general form of the module specific syntax for the 1260-14CC Digital I/O module is:

Command address.parameters
where:
command is one of the 1260-14C module specific commands.
Address is the module address set by SW1 on the 1260-14C (1-12).

Parameters are the command specific parameters and data.

NOTE:

The address used here is not the VXIbus defined logical address of the Master. It is a designation unique to the 1260 Series and is used by the 1260 Option 01 to identify individual 1260 modules. This switch setting is a requirement, since a single Option 01 can control multiple 1260 Series modules. This address corresponds to the binary value of the switch setting of SW1 on the switching module PCB, and can take on the values from 1 to 12.

Syntax Notations and Conventions

The following syntax notations and conventions are used throughout the manual:

All terms in upper case letters are used directly in the command syntax, although case is not important in the actual command string sent to the Option 01.

All items in brackets ([]) are optional.
All lower case letters within greater/less than pairs (< >) are to be replaced by numeric values, as specified in the syntax description.

A vertical bar (\|) represents the "or" function, and specifies that the user must select only one of the items separated by bars.

All lines must be terminated by an ASCII line feed <LF>, EOI or both.

Write data may be in either decimal, hexadecimal, or binary format. Non-decimal numbers must be preceded with "H" for hex, or "B" for binary.

Definition of Commands

PDATAOUT Command

Syntax: PD[ATAOUT] <address>[.<ports>][,<address> [.<ports>],...]
<address>::= Module address of the 1260-14C (1-12)
<ports>::= One or more consecutive ports to return data from. A single port is specified as a decimal number from 0 to 11. A group of ports is specified as two decimal numbers from 0 to 11 separated by a hyphen, (-), with the lower numbered port to the left and the higher numbered port to the right. For example, the command string PD 1.3-5 would return values for ports 3, 4 and 5.

Description: The PDATAOUT command will cause the module specified by the logical address to return the data associated with each requested port. The format of the return data is as follows:
<address>. 1260-14C DIGITAL INPUT/OUTPUT MODULE
<CR><LF>
<address>. [<port>:
<data>,...]<CR><LF>
<address>.END<CR><LF>
where:
<address>::= A three digit module address. (001-012)
<data>::= From 0 to 256 pieces of data in eitherdecimal, hexadecimal or binary format.
<port>::= A 2-digit number specifying the port to associate with the data that follows.

NOTE:

There is a space following the period on each line except for the line containing the END string. This allows the user to detect when the last line of a multiple line reply has occurred by looking at the fifth character of each line to see if it is a space or an ASCII "E". This convention is true for all commands returning multiple line outputs.

Output data for the specified modules and ports are in the same order as requested in the command. Each port's data is preceded with the port number and a colon. The type and format of the data returned will depend on how the port is defined and the last operation performed on the port. This is determined as follows:

If the port is defined as a synchronous mode read port, the command will return the data from the most recent synchronous test, using the same data width and format that was specified when the test was defined. If the port has been defined as synchronous but no test has been run since the port was defined, no values are returned (e.g., "001. 07:").

If the port is defined as a synchronous mode write port, the command will return the most recent write data loaded for this port, using the same data width and format used to load the data. If no data is loaded, no values are returned (e.g., "001. 07:").

If the port is defined as an asynchronous port, the command will return the results of the most recent READ or WRITE command, using the same data width and format used in that command. If no READ or WRITE commands have been sent, no values are returned (e.g., "001. 07:").

Example:
Assume that port 0 is a synchronous mode byte-wide (8 bit) port that read in the hex values $9 f, 7 \mathrm{f}, 3 \mathrm{f}$ and 1 f during vectors $1-4$ of the last synchronous test. Port 1 is a synchronous mode bytewide port that wrote out the decimal values $21,31,41$ and 51 during vectors 1-4 during the last synchronous test. Port 2, along with port 3, is an asynchronous word-wide (16-bit) port that was last used to read a hex 7AA6. Port 4 is an asynchronous bytewide port that was last used to write a binary 10101101.

The command:
PD 1.0-4
would return the following data:

1. 1260-14C DIGITAL INPUT/OUTPUT MODULE<CR> <LF>
2. 00:9F, 7F, 3F, $1 \mathrm{~F}<\mathrm{CR}><L F>$
3. 01:21,31,41,51<CR><LF>
4. 02:7AA6<CR><LF>
5. 04:10101101<CR><LF> 001.END<CR><LF>

PSETUP command Syntax: PS[ETUP] <address>
<address>::= Module address of the 1260-14C (112)

Description: This command will cause the module to return the condition of all the setup variables for the 1260-14C at the specified module address. The following is a sample output from a PSETUP command for a 1260-14C at module address 1, showing the power-up default condition for the setup variables:

1. 1260-14C DIGITAL INPUT/OUTPUT MODULE
2. ENABLE
3. SYNC 0
4. BUSY POS
5. CLKIN POS
6. ARM OFF
001.END

NOTE:
Since the "ENABLE" command is not supported on the 1260-14C, the "ENABLE" entry in the PSETUP response is meaningless and should be ignored.

READ command

Syntax:
Byte: READ <address>.<ports>[,Y][,B |,H]
Word: READ <address>.<ports>,W[,B |,H]
Bit: READ <address>.<ports>,X<bit>[,X<bit>...]
Fast: READ <address>.<ports>,Z,[,H]
<address>::= Module address of the 1260-14C (1-12)
<ports>::= One or more consecutive ports to read from. A single port is specified as a decimal number from 0 to 11. A group of ports is specified as two decimal numbers from 0 to 11 separated by a hyphen, (-), with the least significant port to the right and the most significant port to the left. For example, the command READ 1.3-5,Y would return values for ports 3, 4 and 5.
<bit>::= The individual bit number (0-7) to read in the bit mode. The user may specify multiple bits by separating each $\mathrm{X}<$ bit> with commas. Bit 0 is the LSB and bit 7 the MSB.

A "B" specifies that the output format for the data is binary. Note that this format is unavailable in the fast byte mode to keep the output on a single 80-character line.

An " H " specifies that the output format for the data is hexadecimal.

A " Y " causes a byte-wide (8-bit) read of the port. This is the default if no width is specified. See Example 1 above for a sample of a byte-wide READ command.

A "W" causes a word-wide (16-bit) read of a pair of ports. Word-wide operations are specified on even-numbered ports only, and read the least significant 8 bits from the even port and the most significant 8 bits from the following odd-numbered port.

Description: This command performs an asynchronous read from a single port or a group of consecutive ports. No handshaking is required for this operation. This command will only read those ports defined as asynchronous ports. It will not read from a synchronous port. A read from a write-enabled port will return the value that the port is currently driving. As soon as the command is received, an immediate read of the specified port(s) occurs. The data for each requested port is sent to the user in the order of lowest to highest port, and with the exception of the fast mode, data is returned in a form identical to that of a PDATAOUT.

Read operations may be performed as either a bit, byte or wordwide operation, with byte-wide being the default. In addition, on firmware revisions 18.1 and beyond, there is a byte-wide fast output mode available that reduces the output string size, significantly cutting down on the data transfer time from the 1260 Option 01 to the Slot 0 controller. Data is formatted in either decimal, hexadecimal or binary, with the default being decimal. The width and format of the output are specified as follows:

Example 1:
Assume that ports 5-11 are defined as asynchronous and are tristated, port 5 is sensing a 23, port 6 is sensing a 0 , port 7 is sensing 127 and the user sends the following command:

READ 1.5-7,Y
The user would read back:

```
001. 1260-14C DIGITAL INPUT/OUTPUT MODULE<CR>
```

 <LF>
 1. 05 : $23<$ CR><LF>
2. 06: $0<C R><L F>$
3. 07: 127 <CR><LF>
001.END<CR><LF>

Example 2:

Assume that all ports are defined as asynchronous and are tristated, port 0 is sensing a hex 1 e , port 1 is sensing a hex c7, port 2 is sensing a hex d3, port 3 is sensing a hex a0 and the user sends the following command:

READ 1.0-2,W,H
The user would read back:

1. 1260-14C DIGITAL INPUT/OUTPUT MODULE<CR> <LF>
2. 00: C71E<CR><LF>
3. 02: A0D3<CR><LF>
001.END<CR><LF>

An "X" causes a bit-wide read of the port. Any combination of the 8 bits from $\mathrm{XO}-\mathrm{X} 7$ may be read simultaneously. The output will contain the status of each bit in binary format and in the same order as specified in the command.

Example 3:

Assume that ports 7-11 are defined as asynchronous and are tristated, port 7 is sensing a binary 10001010, port 8 is sensing a 01111101, and the user sends the following command:

READ 1.7-8, X7, X3, X1, X0
The user would read back:

1. 1260-14C DIGITAL INPUT/OUTPUT MODULE<CR> <LF>
2. 07: $1110<C R><L F>$
3. 08: $0101<C R><L F>$
001.END<CR><LF>

A "Z" causes a byte-wide (8 bit) read of the port, but instead of using the PDATAOUT format for returning the data, it uses a shorter single line output to reduce the amount of time needed to transfer the read data. It is identical to the standard byte width read with the exception that binary formatting is not available, and the output contains no header line, END line, module address or port numbers. All the output line contains is the port data separated by commas. Data is returned in least significant port to most significant port order. This type of read is only available on firmware revisions 18.1 or later.

Example 4:

Assume that ports 5-11 are defined as asynchronous and are tristated, port 5 is sensing a hex 7 f , port 6 is sensing a hex 01 , port 7 is sensing a hex c3 and the user sends the following command:

READ 1.5-7,Z,H
The user would read back:

$$
7 F, 01, C 3<C R><L F>
$$

RESET command

SETUP ARM command

Syntax: RES[ET]
Description: The RESET command resets the 1260-14C card to the power-up state. Specifically, the following attributes are programmed after the RESET command is executed:

BUSY Polarity	Positive
CLKIN Polarity	Positive
Synchronous Ports	None (SYNC 0)

Arm Off

All Ports Tri-stated

Syntax: \quad SE[TUP] <address>.AR[M],ON | OFF
<address>::= Module address of the 1260-14C (1-12)
Description: This command is used to arm and disarm the synchronous handshake mode. Setup data may only be modified while ARM is OFF. Synchronous data transfers may only take place when ARM is ON. Once the card is armed, any attempts to send a setup command other than a SETUP <address>.ARM,OFF will cause an error.

The completion of the last synchronous READ/WRITE operation in a test automatically sets the ARM mode to OFF. The CLKIN signal used to cause data transfers is ignored as long as ARM is OFF.

Each time the ARM is set to ON, synchronous READ/WRITE operations restart at the first location in the port's buffer. This means that if the user sets up a port to output five data items, resetting the ARM causes the first data item to be transferred at the next occurrence of the CLKIN signal. This is regardless of where in the buffer the test had been when the ARM was set to OFF. PDATAOUT commands are not recognized until ARM is OFF. The default power-up condition of ARM is OFF.

Example:

This command sets ARM mode to ON within the module at address 1.

SETUP 1.ARM,ON

SETUP BUSY command

Syntax: \quad SE[TUP] <address>.BU[SY],POS | NEG
<address>::= Module address of the 1260-14C (1-12)
Description: This command defines the polarity of the BUSY handshake line. Setting the polarity to POS causes the BUSY line to be set HIGH when the $1260-14 \mathrm{C}$ is busy processing during synchronous operation. Setting the polarity to NEG causes the BUSY line to be set LOW when the module is busy. The default power-up condition is POS.

NOTE:

The BUSY line is only valid when synchronous operations are defined and armed. Spurious signals at other times should be ignored by the user.

Example:
This command sets the polarity of the BUSY signal to negative within the module at address 2 .

SETUP 2.BUSY,NEG

Syntax: \quad SE[TUP] <address>.CL[KIN],POS | NEG
<address>::= Module address of the 1260-14C (1-12)
Description: This command defines the active edge of the CLKIN handshake signal. Setting CLKIN to POS causes the module to trigger on the positive (or rising) edge of the CLKIN signal. Setting the polarity to NEG causes the module to trigger on the negative (or falling) edge of the CLKIN signal. The default power-up condition is POS.

NOTE:

The CLKIN line is only monitored when synchronous operations are defined and armed. Spurious signals at other times will be ignored.

Example:

This command sets the active edge of the CLKIN signal to negative within the module at address 3 .

SETUP 3.CLKIN, NEG

SETUP RD command

Syntax: Byte: SE[TUP] <address>.RD,<port>[,Y][,B |,H], <vectors>
Word: SE[TUP] <address>.RD, <port>,W[,B | ,H], <vectors>
Bit: SE[TUP] <address>.RD,<port>,X<bit>
[,X<bit>...],<vectors>
<address>::= Module address of the 1260-14C (1-12)
<port>::= Synchronous port number that is being defined (0-11) <vectors>::= The number of synchronous reads to perform (0-256) <bit>::= Bit number to be read in the bit mode (0-7)

A "B" specifies that the output format for the data is binary. Note that this format is unavailable in the fast byte mode to keep the output on a single 80-character line.

A "H" specifies that the output format for the data is hexadecimal.
A "Y" causes a byte-wide (8 bit) read of the port. This is the default is no width is specified. See Example 1 above for a sample of a byte-wide READ command.

A "W" causes a word-wide (16 bit) read for a pair of ports. Wordwide operations are specified on even-numbered ports only, and read the least significant 8 bits from the even port and the most significant 8 bits from the following odd-numbered port.

Description: This command sets up a synchronous port to perform a buffered read operation and clears that ports buffer of any previous values. Once a synchronous test is armed, data is clocked into the port by each active edge of CLKIN and the results stored in a buffer for up to a maximum of 256 vectors. A vector count of 0 implies that the port is to do nothing during this test. Once a test has been defined for a synchronous port, the test may be started and stopped at any time using the SETUP ARM ON/OFF commands. It should be noted that it is the user's responsibility to ensure that the appropriate ports are tri-stated before starting the synchronous test.

After the final data transfer has occurred for all synchronous ports, the ARM is automatically disabled, allowing the user to retrieve the
buffered data via the PDATAOUT command. This is also allowed after a synchronous test is disarmed manually via the SETUP ARM OFF command.

Example 1:
Assume that ports 0 and 1 are defined as synchronous and the user sends the following commands:

SETUP 1.RD 0,Y,H,10
SETUP 1.RD 1,22
During the next synchronous test, port 0 would read 10 vectors worth of byte-wide information and store it in hexadecimal format. Port 1 would read 22 vectors of byte-wide information and store it in decimal format.

Read operations may be performed as either bit, byte or word width operations, with byte width being the default. Data will be formatted either in decimal, hexadecimal or binary, with the default being decimal. The width and format of the output are specified as follows:

Example 2:
Assume that ports 0-3 are synchronous ports, ports 2 and 3 were previously defined as synchronous word-wide read ports and the user sends the following commands:

SETUP 1.RD 0,W,5
SETUP 1.RD 2,Y,7
The first command would cause the module to perform a wordwide read of five vectors worth of data from ports 0 and 1 during the next synchronous test. The second command would cause a byte-wide read of 7 vectors worth of data from port 2 during the next synchronous test, and would disable port 3 from participating in subsequent tests until redefined.

An " X " specifies a bit-wide read of the port. Any combination of the 8 bits from X0-X7 may be specified, but only the selected bits are stored when the user runs the synchronous test. The buffer will contain the status of the bits requested at each vector in the same order as specified in the command. If the port was previously read using a word width, the data associated with the companion port will be cleared, and the port will be disabled in future synchronous operations until redefined.

Example 3:

Assume that port 0 is a synchronous port and the user sends the following command:

SETUP 1.RD 0, $\mathrm{X} 5, \mathrm{X} 7, \mathrm{X} 1,10$
This command would cause the module to perform a bit-wide read of bits 5,7 and 1 for ten vector on port 0 during the next synchronous test.

SETUP SYNC command

Syntax: SE[TUP] <address> .SY[NC],<number of ports> <address>::= Module address of the 1260-14C (112)
<number of ports>::= Number of ports to make synchronous (0-12)

Description: This command specifies the number of ports that will have the synchronous mode enabled. Note that the user may not specify which ports are synchronous and which are asynchronous. Instead, the synchronous ports are always grouped together starting at port 0; i.e., the first synchronous port is always port 0 ; the second is always port 1 , etc.

Example:

Assume the user sends the following command:
SETUP 1.SYNC,5
This would cause the digital I/O card with the module address of 1 to define the 5 ports from port 0 to port 4 as synchronous ports. The remaining 7 ports from port 5 to port 11 would become asynchronous.

On power-up, the synchronous mode is disabled for all ports. When the SYNC command is given, those ports that change configuration from asynchronous to synchronous, or vice versa, are re-initialized. This causes any old format, mode, or read/write data to be removed. Consequently, all new synchronous ports should be programmed with a SETUP <address>.RD or SETUP <address>.WR command before they are used in synchronous operations.

Only those ports defined as synchronous may perform data transfers utilizing the CLKIN and BUSY handshake lines.

The asynchronous WRITE command will work normally on a synchronous port, but the READ command will not. This allows the user to preset the value of the port prior to the beginning
synchronous operations. Note that this may only be done while the synchronous mode is not armed.

SETUP WR command

Syntax: Byte: SE[TUP] <address>.WR, <port>[,Y][, <byte>,..., <byte>]
Word: SE[TUP] <address>.WR, <port>[,W][, <word>,..., <word>]
Bit: SE[TUP] <address>.WR, <port>[,X][, <bits>;...;<bits>]
<address>::= Module address of the 1260-14C (1-12)
<port>::= Synchronous port number that is being defined (011)
<byte>::= An 8 bit value specified as either decimal format ($0-$ 255), hexadecimal format (HO-HFF) or binary format (BOB 11111111). Note that the " H " is required in front of hex values and the " B " is required in front of binary values.
<word>::= A 16-bit value specified in either decimal format ($0-$ 65535), hexadecimal format (H0-HFFFF) or binary format (B0B11111111111111111). Note that the " H " is required in front of hex values and the " B " is required in front of binary values.
<bits>::= Specifies up to eight single bit transitions in the form $\mathrm{Lx}|\mathrm{Hx}, \ldots \mathrm{Lx}| \mathrm{Hx}$ where x specifies which bit number to write high (Hx) or low (Lx), and x may take the values from 0-7. For example, SETUP 5.WR 1,X,L1,L3;H0,H1 would cause bits 1 and 3 in port 1 to go low in vector 1 followed by bits 0 and 1 going high in vector 2 .

A "B" specifies that the output format for the data is binary. Note that this format is unavailable in the fast byte mode to keep the output on a single 80-character line.

A "H" specifies that the output format for the data is hexadecimal.
A " Y " causes a byte-wide (8 bit) read of the port. This is the default is no width is specified. See Example 1 above for a sample of a byte-wide READ command.

A "W" causes a word-wide (16-bit) read for a pair of ports. Wordwide operations are specified on even-numbered ports only, and read the least significant 8 -bits from the even port and the most significant 8-bits from the following odd-numbered port.

Description: This command sets up a single synchronous port to perform a buffered write operation. Up to 256 data vectors can be set up ahead of time in the port's buffer. Once a synchronous test is armed, data from the buffer is clocked out of the port by each
active edge of CLKIN until either the last data item for each synchronous port has been clocked, automatically disarming the test, or the user disarms the test manually using the SETUP ARM,OFF command. The last value on the port will remain there until either another synchronous test is run, the user performs an asynchronous WRITE on the port, or the user resets the module. It should be noted that it is the user's responsibility to ensure that the appropriate ports are write-enabled before starting the synchronous test.

Write commands may be specified either as bit, byte or word-wide operations. When a width change is requested by using either the " W ", " X " or " Y " width designator, the port's buffer is cleared of all previous data and the new data is loaded starting at vector 1. If there is no width designator, the port remains in its current mode, and the new data is appended to the existing data in the buffer for up to a maximum of 256 vectors of data. This means that multiple statements may be used to load a given port's buffer by specifying a width for the first SETUP WR statement, and not specifying a width for subsequent statements.

Example 1:

Assume the user sends the following three statements to the module:

SETUP 1.WR 0,Y,7,15,23
SETUP 1.WR 0,255
SETUP 1.WR 0,100
The first SETUP statement would set up port 0 to perform bytewide operations and would clear the port 0 buffer of any previous values. It would then load a 7 in vector 1, a 15 in vector 2 , and a 23 in vector 3. The second SETUP statement would leave the buffer intact, and would load a 255 in vector 4 . The final SETUP statement would load a 100 in vector 5 . Once the test was armed, port 0 would be actively driving a 7 after the first clock, a 15 after the second, etc. and would end the test driving a 100.

The data that is loaded in the buffer remains there until either the port is re-initialized by a SETUP WR or a WRITE command, the port is redefined to be a read port, the port is redefined to be an asynchronous port, or the unit is reset. This means that it is possible to arm and run a test multiple times without having to reload the write data.

Bit, byte and word-wide operations cannot be mixed in a port. Only one width may be active at a time and is specified as follows:

A " Y " specifies a byte-wide (8-bit) write to a port. If the port was
previously defined using a word width, the data associated with the companion port will be cleared, and the port will be disabled in future synchronous operations until redefined. When a port is first defined as synchronous, it defaults to byte-wide operations, so it is only necessary to specify a byte width if the user is changing from a different width, or wishes to clear the buffer. See Example 1 above for a sample of a byte-wide synchronous write setup.

A "W" specifies a word-wide (16 bit) write to a pair of ports. Wordwide operations are specified on even-numbered ports only, and place the least significant 8 bits in the even port and the most significant 8 bits in the following odd-numbered port. Word sized operations may not be mixed with bit or byte operations in either the even or odd port. If either the even or the odd port is redefined as a byte-wide or a bit-wide port, both ports will have their buffers cleared and the matching odd or even companion port will be disabled in future synchronous operations until redefined.

Example 2:

Assume that ports 0-3 are synchronous ports, ports 2 and 3 were previously defined as synchronous word-wide write ports and the user sends the following commands:

SETUP 1.WR 0,W,H5F01,H6F02,H7F03
SETUP 1.WR 2,Y,16,8,4,2,1
The first command would clear the buffers for ports 0 and 1, and would cause the module to perform a word wide write of three vectors to ports 0 and 1 during the next synchronous test, finishing the test with the value of hex 03 in port 0 and hex 7 F in port 1 . The second command would clear the buffers for ports 2 and 3 and would cause a byte-wide write of five vectors to port 2 during the next synchronous test, finishing the test with a value of 1 in port 2. Port 3 would be disabled from participating in subsequent tests until redefined.

An "X" specifies a bit-wide write to a port. Any of the 8 bits from 07 may be set to 0 (Low) or 1 (High) by using the form Lx or Hx, where x is the bit to modify. Multiple bits may be modified by separating the bit transitions with commas. Multiple vectors may be set up by separating the changes for each vector with semicolons. Bits that are not modified remain in their previous states. If the port was previously defined using a word width, the data associated with the companion port will be cleared, and the port will be disabled in future synchronous operations until redefined.

Example 3:
Assume the user sends the following two statements to the module and the current value of port 0 is a binary 00000000:

SETUP 1.WR 0,X,H3;H1,L3;H5,H7
SETUP 1.WR 0,L1,L7
The first SETUP statement will first clear the buffer for port 0 , then specify that bit 3 will go high in vector 1, bit 1 will go high and bit 3 will go low in vector 2 , and bits 5 and 7 will go high in vector 3 . The second SETUP statement will leave the buffer intact and will specify that in vector 4 , bits 1 and 7 will go low. Once the test is armed, port 0 would be actively driving a binary 00001000 after the first clock, a 00000010 after the second, a 10100010 after the third and a 00100000 after the last clock.

WRITE command

Syntax: Byte: WR[ITE] <address>.<ports>[,Y][,<byte>,..., <byte>]

Word: WR[ITE] <address>.<ports>[,W][,<word>,...,
<word>]
Bit: WR[ITE] <address>.<ports>[,X][,<bits>;.....;<bits>]
<address>::= Module address of the 1260-14C (1-12)
<ports>::= One or more consecutive ports to write to. A single port is specified as a decimal number from 0 to 11 . A group of ports is specified as two decimal numbers from 0 to 11 separated by a hyphen, (-), with the least significant port to the right and the most significant port to the left. For example, the command WR $1.3-5, Y, 0,1,2$ would write a 0 in port 3 , a one in port 4 and a 2 in port 5. Data may be specified in decimal, hexadecimal or binary.
<byte>::= An 8-bit value specified as either decimal format (0255), hexadecimal format (HO-HFF) or binary format (BOB11111111). Note that the " H " is required in front of hex values and the " B " is required in front of binary values.
<word>::= A 16-bit value specified in either decimal format ($0-$ 65535), hexadecimal format (HO-HFFFF) or binary format (BOB1111111111111111). Note that the " H " is required in front of hex values and the " B " is required in front of binary values.
<bits>::= Specifies up to eight single bit transitions in the form $\mathrm{Lx}|\mathrm{Hx}, \ldots \mathrm{Lx}| \mathrm{Hx}$ where x specifies which bit number to write high (Hx) or low (Lx), and x may take the values from 0-7. For example, WR 1.1-2, $\mathrm{X}, \mathrm{L} 1, \mathrm{~L} 3 ; \mathrm{HO}, \mathrm{H} 1$ would cause bits 1 and 3 to go low in port 1 and bits 0 and 1 to go high in port 2.

A "B" specifies that the output format for the data is binary. Note that this format is unavailable in the fast byte mode to keep the output on a single 80-character line.

A "H" specifies that the output format for the data is hexadecimal.
A " Y " causes a byte-wide (8 bit) read of the port. This is the default if no width is specified. See Example 1 above for a sample of a byte-wide READ command.

A "W" causes a word-wide (16 bit) read for a pair of ports. Wordwide operations are specified on even-numbered ports only, and read the least significant 8 bits from the even port and the most significant 8 bits from the following odd-numbered port.

Description: This command performs an asynchronous write to a single port or a group of consecutive ports. No handshaking is required for this operation. The command is primarily used to write to asynchronous ports, but may be used to preset synchronous ports to a known value before starting synchronous operations.

NOTE:

Care should be used not to change the width when writing to a synchronous port if the port has already had its width defined and data loaded into the buffer. In this case, the user should not specify a width, and should format the WRITE data in the same size that the synchronous port was defined at. Failure to do so will cause the port to change its width designation, and will clear the data in the buffer.

As soon as the command is received, an immediate write to the specified ports occurs. A port may be written to when tri-stated, but the value will not become present on the port until after it is write-enabled. The data is written one data item per port, and the number of ports must match the number of data items. The first data item corresponds to the lowest significant port and the last data item corresponds to the highest significant port.

Example 1:

Assume that ports 5-11 are defined as asynchronous and the user sends the following command:

WR 1.5-7, Y, 23, 0, 127
At the end of command execution, port 5 would be actively driving a 23 , port 6 would be driving 0 and port 7 would be driving 127 .

Write operations may be performed as either a bit, byte or wordwide operation. If no width is specified, it remains unchanged from its previous setting, and the data must be specified in the same form as used in the most recent WRITE or SETUP WR statement for each port. If no width has ever been specified, the default is byte-wide. Bit, byte and word-wide operations cannot be mixed in a port. Only one width is active at a time and is specified as follows.

A "Y" causes a byte-wide (8 bit) write to the ports. When writing to a synchronous port that was previously defined or written to using a word width, the data buffer associated with the companion port will be cleared and the port will be disabled in future synchronous operations until it is redefined. When a port is first defined as synchronous or asynchronous, it defaults to byte-wide operations, so it is only necessary to specify the byte width if the user is changing from a different width, or wishes to clear the synchronous write buffer. See Example 1 above for a sample of a byte-wide asynchronous write.

A "W" causes a word-wide (16 bit) write to pairs of ports. Wordwide operations are specified on even-numbered ports only, and place the least significant 8 bits in the even port and the most significant 8 bits in the following odd-numbered port. Word-wide operations may not be mixed with bit or byte-wide operations in either the even or odd port.

Example 2:
Assume that ports 5-11 are defined as asynchronous and the user sends the following command:

WR 1.8,W,H23A7
At the end of command execution, port 8 would be actively driving a hex 23 and port 9 would be driving hex $A 7$.

An " X " specifies a bit-wide write to the ports. Any of the 8 bits within a port may be set to 0 (Low) or 1 (High) by using the form Lx or Hx , where x is the bit (0-7) to modify within the byte. Multiple bits within a port may be modified by separating the bit transitions with commas. Multiple ports may be modified by separating the changes for each port with semicolons. Bits that are not modified remain in their previous states. When writing to a synchronous port that was previously defined or written to using a word width, the data buffer associated with the companion port will be cleared and the port will be disabled in future synchronous operations until it is redefined.

Example 3:
Assume that all ports are asynchronous, the current value of port 0 and port 1 is a binary 00000000 and the user sends the following statements to the module:

WR 1.0-1,X,H3;H1,H7
WR 1.0-1,L3,H5;L1,H6
After the execution of the first command, port 0 would be actively driving a binary 00001000 and port 1 would be driving a 10000010. After the second command, port 0 would be driving a 00100000 and port 2 would be driving a 11000000 . Note that in the second command, there was no width specified since it was not required.

Synchronous Mode Example

The following is an example of an 8-vector synchronous read/write operation using a $1260-14 \mathrm{C}$ at address 1 :

1. $S E 1 . S Y, 2<C R><L F>$
2. SE 1.RD $0,8<C R><L F>$

Sets up ports 0 and 1 for SYNC mode; ports 2-11 will be in ASYNC mode.

Tells the module to read data into first eight buffer locations of port 0 when clocked.
3. SE 1.WR $1, Y, 1,2,3,4<C R><L F>$ Sets port 1 into the byte mode and loads write data into its first four buffer locations.
4. SE 1.WR $1,5,6,7,8<C R><L F>$ Loads write data into the next four buffer locations of port 1.
5. WR $1.1,0<C R><L F>\quad$ Presets the value of port 1 to zero.

Now the 1260-14C has the write data in the first eight buffer locations for port 1.
6. SE 1.AR, ON<CR><LF> Enable SYNC handshake of READ/WRITE.

Eight handshakes occur using the CLKIN and BUSY lines, each one causing a READ/WRITE to/from ports $0 / 1$ for the eight programmed buffer locations. The eighth clock input causes the $1260-14 \mathrm{C}$ to disarm and stops all handshaking until the unit is rearmed.
7. PD $1.0<C R><L F>$

Reads the data from the 1260-14C.

Repeat Steps 3-7 to reprogram and run using a new set of WRITE data, or repeat Steps 5-7 to re-execute the same test.

Chapter 4

OPTIONAL HARNESS ASSEMBLIES

The following harness assemblies are used to connect 1260-14 to Freedom Series Test Receiver Interfaces.

Each harness documentation consists of an assembly drawing, parts list, system wire list and wire list.

407272	Virginia Panel, Inc. Series VP90 Interface Harness
407273	TTI Testron, Inc. Interface Harness

For more information on Racal Instruments complete line of Test Receivers Interface solution, contact your Sales Representative.

This page was left intentionally blank.

ENGINEERING PARTS LIST

ITEM	BIN	PART NO.	DESCRIPTION	QTY	REFERENCE
1		405084	PCB AS SY, VP90 INTFC,64PIN	1	J102
2		405085	PCB ASSY, VP90 1NTFC,96PIN	2	J100-J101
3		407251	CABLE ASSY, DC, 50-COND., VP90	1	
4		407256	CABLE ASSY, DC, 60-COND., VP90	2	
5		407252	CABLE ASS Y, 50SPLT, VP90	1	
6		910541	POLYURETHANE CONF. COAT	A/R	

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 2 of 9		

ENGINEERING PARTS LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
	BLK AA (J100)	Uxx-SLOT yy (J1,J2)	CABLE	407272		SYSTEM WIRE LIST
	BLK AA (J101)	Uxx-SLOT yy (J2,J3)	CABLE	407272		
	BLK AA (J102)	Uxx-SLOT yy (J4)	CABLE	407272		

This system wirelist serves as a template for incorporating this harness assembly into the overall system wirelist. It does not in any way affect the fabrication of this harness assembly.

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 3 of 9		

ENGINEERING WIRE LIST

WIRE	FROM	то	TYPE	PART \#	WIRE LEN	REFERENCE
1	J100-96	J1-1	BRN	407251	41.5"	CHAN 01
2	J100-32	J1-2	TAN	407251	41.5"	CHAN 01 RTN
3	J100-64	J1-3	RED	407251	41.5"	CHAN 02
4	J100-95	J1-4	TAN	407251	41.5"	CHAN 02 RTN
5	J100-31	J1-5	ORN	407251	41.5"	CHAN 03
6	J100-63	J1-6	TAN	407251	41.5"	CHAN 03 RTN
7	J100-94	J1-7	YEL	407251	41.5"	CHAN 04
8	J100-30	J1-8	TAN	407251	41.5"	CHAN 04 RTN
9	J100-62	J1-9	ORN	407251	41.5"	CHAN 05
10	J100-93	J1-10	TAN	407251	41.5"	CHAN 05 RTN
11	J100-29	J1-11	BLU	407251	41.5"	CHAN 06
12	J100-61	J1-12	TAN	407251	41.5"	CHAN 06 RTN
13	J100-92	J1-13	VIO	407251	41.5"	CHAN 07
14	J100-28	J1-14	TAN	407251	41.5"	CHAN 07 RTN
15	J100-60	J1-15	GRY	407251	41.5"	CHAN 08
16	J100-91	J1-16	TAN	407251	41.5"	CHAN 08 RTN
17	J100-27	J1-17	WRT	407251	41.5"	CHAN 09
18	J100-59	J1-18	TAN	407251	41.5"	CHAN 09 RTN
19	J100-90	J1-19	BLK	407251	41.5"	CHAN 10
20	J100-26	J1-20	TAN	407251	41.5"	CHAN 10 RTN
21	J100-58	J1-21	BRN	407251	41.5"	CHAN 11
22	J100-89	J1-22	TAN	407251	41.5"	CHAN 11 RTN
23	J100-25	J1-23	RED	407251	41.5"	CHAN 12
24	J100-57	J1-24	TAN	407251	41.5"	CHAN 12 RTN
25	J100-88	J1-25	ORN	407251	41.5"	CHAN 13
26	J100-24	J1-26	TAN	407251	41.5"	CHAN 13 RTN
27	J100-56	J1-27	YEL	407251	41.5"	CHAN 14
28	J100-87	J1-28	TAN	407251	41.5"	CHAN 14 RTN
29	J100-23	J1-29	GRN	407251	41.5"	CHAN 15
30	J100-55	J1-30	TAN	407251	41.5"	CHAN 15 RTN
31	J100-86	J1-31	BLU	407251	41.5"	CHAN 16
32	J100-22	J1-32	TAN	407251	41.5"	CRAN 16 RTN
33	J100-54	J1-33	VIO	407251	41.5"	CHAN 17
34	J100-85	J1-34	TAN	407251	41.5"	CHAN 17 RTN
35	J100-21	J1-35	GRY	407251	41.5"	CHAN 18
36	J100-53	J1-36	TAN	407251	41.5"	CHAN 18 RTN
37	J100-84	J1-37	WHT	407251	41.5 "	CHAN 19
38	J100-20	J1-38	TAN	407251	41.5"	CHAN 19 RTN
39	J100-52	J1-39	BLK	407251	41.5"	CHAN 20
40	J100-83	J1-40	TAN	407251	41.5"	CHAN 20 RTN
41	J100-19	J1-41	BRN	407251	41.5"	CHAN 21
42	J100-51	J1-42	TAN	407251	41.5"	CHAN 21 RTN
43	J100-82	J1-43	RED	407251	41.5"	CHAN 22
44	J100-18	J1-44	TAN	407251	41.5"	CHAN 22 RTN
45	J100-50	J1-45	ORN	407251	41.5"	CHAN 23
46	J100-81	J1-46	TAN	407251	41.5"	CHAN 23 RTN
47	J100-17	J1-47	YEL	407251	41.5 "	CHAN 24
48	J100-49	J1-48	TAN	407251	$41.5{ }^{\prime \prime}$	CHAN 24 RTN
49	J100-80	J1-49	GRN	407251	41.5"	BUSY
50	J100-16	J1-50	TAN	407251	41.5"	GND

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 4 of 9		

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 51 \\ & 52 \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 100-48 \\ & \mathrm{~J} 100-79 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-15 \\ & \mathrm{~J} 100-47 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 55 \\ & 56 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-78 \\ & \mathrm{~J} 100-14 \end{aligned}$	NO CONNECT NOCONNECT				
$\begin{aligned} & 57 \\ & 58 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-46 \\ & \mathrm{~J} 100-77 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-13 \\ & \mathrm{~J} 100-45 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 61 \\ & 62 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-76 \\ & \mathrm{~J} 100-12 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-44 \\ & \mathrm{~J} 100-75 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 65 \\ & 66 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-11 \\ & \mathrm{~J} 100-43 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 67 \\ & 68 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-74 \\ & \mathrm{~J} 100-10 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 69 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-42 \\ & \mathrm{~J} 100-73 \end{aligned}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 71 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \mathrm{J} 100-9 \\ \mathrm{~J} 100-41 \end{array}$	$\begin{array}{\|l\|} \mathrm{J} 2-1 \\ \mathrm{~J} 2-2 \end{array}$	$\begin{array}{\|l\|} \hline \text { BRN } \\ \text { TAN } \\ \hline \end{array}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{array}{\|l\|} \hline 41.5 " \\ 41.5 " \end{array}$	CHAN 25 CHAN 25 RTN
$\begin{aligned} & 73 \\ & 74 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 100-72 \\ \mathrm{~J} 100-8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{J} 2-3 \\ & \mathrm{J2}-4 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{array}{\|l\|} \hline 41.5 " \\ 41.5 " \end{array}$	$\begin{aligned} & \text { CHAN } 26 \\ & \text { CHAN } 26 \text { RTN } \end{aligned}$
$\begin{aligned} & 75 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-40 \\ & \mathrm{~J} 100-71 \end{aligned}$	$\begin{aligned} & \hline \text { J2-5 } \\ & \text { J2-6 } \end{aligned}$	$\begin{aligned} & \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 27 \\ & \text { CHAN } 27 \text { RTN } \end{aligned}$
$\begin{aligned} & 77 \\ & 78 \end{aligned}$	$\begin{array}{\|l\|} \mathrm{J} 100-7 \\ \mathrm{~J} 100-39 \end{array}$	$\begin{aligned} & \hline \text { J2-7 } \\ & \text { J2-8 } \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 28 CHAN 28 RTN
$\begin{aligned} & 79 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { J100-70 } \\ & \text { J100-6 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-9 \\ & \mathrm{~J} 2-10 \end{aligned}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{array}{\|l\|} \hline 41.5 " \\ 41.5 " \end{array}$	$\begin{aligned} & \text { CHAN } 29 \\ & \text { CHAN } 29 \text { RTN } \end{aligned}$
$\begin{aligned} & 81 \\ & 82 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-38 \\ & \mathrm{~J} 100-69 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-11 \\ & \mathrm{~J} 2-12 \end{aligned}$	$\begin{aligned} & \text { BLU } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 30 CHAN 30 RTN
$\begin{aligned} & 83 \\ & 84 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-5 \\ & \mathrm{~J} 100-37 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-13 \\ & \text { J2-14 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { VIO } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{array}{\|l\|} \hline 41.5 " \\ 41.5 " \\ \hline \end{array}$	CHAN 31 CHAN 31 RTN
$\begin{aligned} & 85 \\ & 86 \end{aligned}$	$\begin{aligned} & \text { J100-68 } \\ & \text { J100-4 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-15 \\ & \mathrm{~J} 2-16 \end{aligned}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 32 CHAN 32 RTN
$\begin{aligned} & 87 \\ & 88 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-36 \\ & \mathrm{~J} 100-67 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-17 \\ & \mathrm{~J} 2-18 \end{aligned}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 33 CHAN 33 RTN
$\begin{aligned} & \hline 89 \\ & 90 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 100-3 \\ \mathrm{~J} 100-35 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J} 2-19 \\ \mathrm{~J} 2-20 \\ \hline \end{array}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 41.5 " \\ 41.5 " \\ \hline \end{array}$	CHAN 34 CHAN 34 RTN
$\begin{aligned} & 91 \\ & 92 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-66 \\ & \mathrm{~J} 100-2 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-21 \\ & \mathrm{~J} 2-22 \end{aligned}$	$\begin{aligned} & \text { BRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 35 CHAN 35 RTN
$\begin{aligned} & 93 \\ & 94 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100-34 \\ & 1100-65 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-23 \\ & \mathrm{~J} 2-24 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 36 CHAN 36 RTN
$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 100-1 \\ & \mathrm{~J} 100-33 \end{aligned}$	$\begin{aligned} & \hline \text { J2-25 } \\ & \text { J2-26 } \end{aligned}$	$\begin{aligned} & \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 37 CHAN 37 RTN

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 5 of 9		

ENGINEERING WIRE LIST

WIRE	FROM	то	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 97 \\ & 98 \end{aligned}$	$\begin{aligned} & \text { J101-72 } \\ & \text { J101-8 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-27 \\ & \mathrm{~J}-28 \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 38 CHAN 38 RTN
$\begin{gathered} 99 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{J} 10140 \\ & \mathrm{~J} 101-71 \end{aligned}$	$\begin{aligned} & \hline \text { J2-29 } \\ & \text { J2-30 } \end{aligned}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 39 CHAN 39 RTN
$\begin{aligned} & 101 \\ & 102 \end{aligned}$	$\begin{aligned} & \text { J101-7 } \\ & \text { J101-39 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-31 \\ & \mathrm{~J} 2-32 \end{aligned}$	$\begin{aligned} & \text { BLU } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 40 CHAN 40 RTN
$\begin{aligned} & 103 \\ & 104 \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 101-70 \\ & \mathrm{~J} 101-6 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-33 \\ & \mathrm{~J} 2-34 \end{aligned}$	$\begin{aligned} & \text { VIO } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 41 CHAN 41 RTN
$\begin{aligned} & 105 \\ & 106 \end{aligned}$	$\begin{aligned} & \text { J101-38 } \\ & \mathrm{J} 101-69 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-35 \\ & \mathrm{~J}-36 \end{aligned}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 42 CHAN 42 RTN
$\begin{aligned} & 107 \\ & 108 \end{aligned}$	$\begin{aligned} & \text { J101-5 } \\ & \text { J101-37 } \end{aligned}$	$\begin{aligned} & \text { J2-37 } \\ & \text { J2-38 } \end{aligned}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 43 CHAN 43 RTN
$\begin{aligned} & 109 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline \text { J101-68 } \\ & \text { J101-4 } \end{aligned}$	$\begin{aligned} & \text { J2-39 } \\ & \text { J2-40 } \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 44 CHAN 44 RTN
$\begin{aligned} & \hline 111 \\ & 112 \end{aligned}$	$\begin{aligned} & \text { J101-36 } \\ & \text { J101-67 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-41 \\ & \mathrm{~J}-42 \end{aligned}$	$\begin{aligned} & \text { BRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 45 CHAN 45 RTN
$\begin{aligned} & 113 \\ & 114 \end{aligned}$	$\begin{aligned} & \hline \text { J101-3 } \\ & \text { J101-35 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-43 \\ & \mathrm{~J} 2-44 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 46 CHAN 46 RTN
$\begin{aligned} & 115 \\ & 116 \end{aligned}$	$\begin{aligned} & \text { J101-66 } \\ & \text { J101-2 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 245 \\ & \mathrm{~J} 2-46 \end{aligned}$	$\begin{aligned} & \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 47 CHAN 47 RTN
$\begin{aligned} & 117 \\ & 118 \end{aligned}$	$\begin{aligned} & \text { J101-34 } \\ & \text { J101-65 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-47 \\ & \mathrm{~J}-48 \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 48 CHAN 48 RTN
$\begin{aligned} & 119 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { J101-1 } \\ & \text { J101-3; } \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-49 \\ & \mathrm{~J} 2-50 \end{aligned}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407252 \\ & 407252 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CLOCK IN } \\ & \text { CLOCK IN RTN } \end{aligned}$
$\begin{aligned} & 121 \\ & 122 \end{aligned}$	$\begin{aligned} & \text { J101-96 } \\ & \text { J101-32 } \end{aligned}$	$\begin{aligned} & \text { J3-1 } \\ & \text { J3-2 } \end{aligned}$	$\begin{aligned} & \text { BRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 49 \\ & \text { CHAN } 49 \text { RTN } \end{aligned}$
$\begin{aligned} & 123 \\ & 124 \end{aligned}$	$\begin{aligned} & \hline \text { J101-64 } \\ & \text { J101-95 } \end{aligned}$	$\begin{aligned} & \text { J3-3 } \\ & \text { J3-4 } \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 50 CHAN 50 RTN
$\begin{aligned} & 125 \\ & 126 \end{aligned}$	$\begin{aligned} & \hline \text { J101-31 } \\ & \text { J101-63 } \end{aligned}$	$\begin{aligned} & \text { J3-5 } \\ & \text { J3-6 } \end{aligned}$	$\begin{aligned} & \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 51 CHAN 51 RTN
$\begin{aligned} & \hline 127 \\ & 128 \end{aligned}$	$\begin{aligned} & \text { J101-94 } \\ & \text { J101-30 } \end{aligned}$	$\begin{aligned} & \hline \text { J3-7 } \\ & \text { J3-8 } \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 52 CHAN 52 RTN
$\begin{aligned} & 129 \\ & 130 \end{aligned}$	$\begin{aligned} & \hline \text { J101-62 } \\ & \text { J101-93 } \end{aligned}$	$\begin{aligned} & \text { J3-9 } \\ & \text { J3-10 } \end{aligned}$	GRN TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 53 CHAN 53 RTN
$\begin{aligned} & 131 \\ & 132 \end{aligned}$	$\begin{aligned} & \mathrm{J} 101-29 \\ & \mathrm{~J} 101-61 \end{aligned}$	$\begin{aligned} & \mathrm{J} 3-11 \\ & \mathrm{~J} 3-12 \end{aligned}$	$\begin{aligned} & \text { BLU } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 54 CHAN 54 RTN
$\begin{aligned} & 133 \\ & 134 \end{aligned}$	$\begin{aligned} & \mathrm{J} 101-92 \\ & \mathrm{~J} 101-28 \end{aligned}$	$\begin{aligned} & \text { J3-13 } \\ & \text { J3-14 } \end{aligned}$	$\begin{aligned} & \hline \text { VIO } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 55 CHAN 55 RTN
$\begin{aligned} & 135 \\ & 136 \end{aligned}$	$\begin{aligned} & \text { J101-60 } \\ & \text { J101-91 } \end{aligned}$	$\begin{aligned} & \text { J3-15 } \\ & \text { J3-16 } \end{aligned}$	GRY TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 56 CHAN 56 RTN
$\begin{aligned} & 137 \\ & 138 \end{aligned}$	$\begin{aligned} & \hline \text { J101-27 } \\ & \text { J101-59 } \end{aligned}$	$\begin{aligned} & \text { J3-17 } \\ & \text { J3-18 } \end{aligned}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 57 CHAN 57 RTN
$\begin{aligned} & 139 \\ & 140 \end{aligned}$	$\begin{aligned} & \text { J101-90 } \\ & \text { J101-26 } \end{aligned}$	$\begin{aligned} & \mathrm{J} 3-19 \\ & \mathrm{~J} 3-20 \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 58 CHAN 58 RTN
$\begin{aligned} & 141 \\ & 142 \end{aligned}$	$\begin{aligned} & \text { J101-58 } \\ & \text { J101-89 } \end{aligned}$	$\begin{aligned} & \text { J3-21 } \\ & \text { J3-22 } \end{aligned}$	BRN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 59 CHAN 59 RTN
$\begin{aligned} & 143 \\ & 144 \end{aligned}$	$\begin{aligned} & \mathrm{J} 101-25 \\ & \mathrm{~J} 101-57 \end{aligned}$	$\begin{aligned} & \mathrm{J} 3-23 \\ & \mathrm{~J} 3-24 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 60 CHAN 60 RTN

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 6 of 9		

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 145 \\ & 146 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-88 \\ \mathrm{~J} 101-24 \end{array}$	$\begin{aligned} & \mathrm{J3}-25 \\ & \mathrm{J3-26} \end{aligned}$	$\begin{aligned} & \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 61 \\ & \text { CHAN } 61 \text { RTN } \end{aligned}$
$\begin{aligned} & 147 \\ & 148 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{J} 101-56 \\ & \mathrm{~J} 101-87 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{J} 3-27 \\ & \mathrm{J3}-28 \end{aligned}\right.$	$\begin{aligned} & \mathrm{YEL} \\ & \mathrm{TAN} \end{aligned}$	$\begin{array}{\|l\|} 407256 \\ 407256 \end{array}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 62 \\ & \text { CHAN } 62 \text { RTN } \end{aligned}$
$\begin{aligned} & 149 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 101-23 \\ J 101-55 \end{array}$	$\begin{aligned} & \mathrm{J} 3-29 \\ & \mathrm{J3-30} \end{aligned}$	ORN TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 63 \\ & \text { CHAN } 63 \text { RTN } \end{aligned}$
$\begin{aligned} & 151 \\ & 152 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 101-86 \\ J 101-22 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J}-31 \\ \mathrm{J3}-32 \end{array}$	$\begin{array}{\|l\|} \hline \text { BLU } \\ \text { TAN } \end{array}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 64 \\ & \text { CHAN } 64 \text { RTN } \end{aligned}$
$\begin{aligned} & 153 \\ & 154 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 101-54 \\ J 101-85 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J}-33 \\ \mathrm{~J}-34 \end{array}$	VIO TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 65 \\ & \text { CHAN } 65 \text { RTN } \end{aligned}$
$\begin{aligned} & 155 \\ & 156 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 101-21 \\ J 101-53 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { J3-35 } \\ \text { J3-36 } \end{array}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 66 CHAN 66 RTN
$\begin{aligned} & 157 \\ & 158 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-84 \\ \mathrm{~J} 101-20 \end{array}$	$\begin{array}{\|l\|} \hline \text { J3-37 } \\ \text { J3-38 } \end{array}$	$\begin{aligned} & \hline \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 67 \\ & \text { CHAN } 67 \text { RTN } \end{aligned}$
$\begin{aligned} & 159 \\ & 160 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-52 \\ J 101-83 \end{array}$	$\begin{aligned} & \mathrm{J} 3-39 \\ & \mathrm{J3}-40 \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 68 \\ & \text { CHAN } 68 \text { RTN } \end{aligned}$
$\begin{aligned} & 161 \\ & 162 \end{aligned}$	$\text { \| } \begin{aligned} & \text { J101-19 } \\ & \text { J101-51 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{J} 3-41 \\ & \mathrm{J3}-42 \end{aligned}\right.$	$\begin{array}{\|l\|l} \mathrm{BRN} \\ \mathrm{TAN} \end{array}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 69 CHAN 69 RTN
$\begin{aligned} & 163 \\ & 164 \end{aligned}$	$\left\lvert\, \begin{aligned} & J 101-82 \\ & J 101-18 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{J}-43 \\ & \mathrm{J3}-44 \end{aligned}\right.$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 70 \\ & \text { CHAN } 70 \text { RTN } \end{aligned}$
$\begin{aligned} & 165 \\ & 166 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-50 \\ \mathrm{~J} 101-81 \end{array}$	$\begin{aligned} & \text { J3-45 } \\ & \text { J3-46 } \end{aligned}$	$\begin{aligned} & \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	CIIAN 71 CHAN 71 RTN
$\begin{aligned} & 167 \\ & 168 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { J101-17 } \\ \text { J101-49 } \end{array}$	$\begin{array}{\|l\|} \hline J 3-47 \\ J 3-48 \end{array}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	CHAN 72 CHAN 72 RTN
$\begin{aligned} & 169 \\ & 170 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{J} 101-80 \\ & \mathrm{~J} 101-16 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{J} 3-49 \\ & \mathrm{J3}-50 \end{aligned}\right.$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	EDRVR 00/VEXT 01 EDRVR 00/VEXT 01 RTN
$\begin{aligned} & 171 \\ & 172 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 101-48 \\ J 101-79 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J} 3-51 \\ \mathrm{~J} 3-52 \end{array}$	$\begin{array}{\|l} \hline \text { BLU } \\ \text { TAN } \end{array}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	EDRVR 01/VEXT 02 EDRVR 01/VEXT 02 RTN
$\begin{aligned} & 173 \\ & 174 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 101-15 \\ \mathrm{~J} 101-47 \end{array}$	$\begin{array}{\|l\|} \hline \text { J3-53 } \\ \text { J3-54 } \end{array}$	VIO TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	EDRVR 02/VEXT 03 EDRVR 02/VEXT 03 RTN
$\begin{aligned} & 175 \\ & 176 \end{aligned}$	$\left\lvert\, \begin{aligned} & J 101-78 \\ & J 101-14 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { J3-55 } \\ \text { J3-56 } \end{array}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & \hline 41.5 " \\ & 41.5 " \end{aligned}$	EDRVR 03/VEXT 04 EDRVR 03/VEXT 04 RTN
$\begin{aligned} & 177 \\ & 178 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{J} 101-46 \\ & \mathrm{~J} 101-77 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{J} 3-57 \\ & \mathrm{~J} 3-58 \end{aligned}\right.$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	EDRVR 04/VEKT 05 EDRVR 04/VEXT 05 RTN
$\begin{aligned} & 179 \\ & 180 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathrm{J} 101-13 \\ \mathrm{~J} 101-45 \end{array}$	$\begin{array}{\|l\|} \hline \text { J3-59 } \\ \text { J3-60 } \end{array}$	BLK TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{array}{l\|} \hline 41.5 " \\ 41.5 " \end{array}$	EDRVR 05/VEXT 06 EDRVR 05/VEXT 06 RTN
$\begin{aligned} & 181 \\ & 182 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-76 \\ \mathrm{~J} 101-12 \end{array}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 183 \\ & 184 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { J101-44 } \\ \text { J101-75 } \end{array}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 185 \\ & 186 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-11 \\ \mathrm{~J} 101-43 \end{array}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 187 \\ & 188 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { J101-74 } \\ \text { J101-10 } \end{array}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 189 \\ & 190 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 101-42 \\ J 101-73 \end{array}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 191 \\ & 192 \end{aligned}$	$\begin{array}{\|l\|} \hline J 101-9 \\ J 101-41 \end{array}$	NO CONNECT NO CONNECT				

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'T'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 7 of 9		

ENGINEERING WIRE LIST

WIRE	FROM		TYPE	PART \#	WIRE LEN	REFERENCE
193	J102-64	J4-1	BRN	407256	41.5"	CHAN 73
194	J102-32	J4-2	TAN	407256	41.5"	CHAN 73 RTN
195	J102-63	J4-3	RED	407256	41.5"	CHAN 74
196	J102-31	J4-4	TAN	407256	41.5"	CHAN 74 RTN
197	J102-62	J4-5	ORN	407256	41.5"	CHAN 75
198	J102-30	J4-6	TAN	407256	41.5"	CHAN 75 RTN
199	J102-61	J4-7	YEL	407256	41.5"	CHAN 76
200	J102-29	J4-8	TAN	407256	41.5"	CHAN 76 RTN
201	J102-60	J4-9	GRN	407256	41.5"	CHAN 77
202	J102-28	J4-10	TAN	407256	41.5"	CHAN 77 RTN
203	J102-59	J4-11	BLU	407256	41.5"	CHAN 78
204	J102-27	J4-12	TAN	407256	41.5"	CHAN 78 RTN
205	J102-58	J4-13	VIO	407256	41.5"	CHAN 79
206	J102-26	J4-14	TAN	407256	41.5"	CHAN 79 RTN
207	J102-57	J4-15	GRY	407256	41.5"	CHAN 80
208	J102-25	J4-16	TAN	407256	41.5"	CHAN 80 RTN
209	J102-56	J4-17	WHT	407256	41.5"	CHAN 81
210	J102-24	J4-18	TAN	407256	41.5"	CHAN 81 RTN
211	J102-55	J4-19	BLK	407256	41.5"	CHAN 82
212	J102-23	J4-20	TAN	407256	41.5"	CHAN 82 RTN
213	J102-54	J4-21	BRN	407256	41.5"	CHAN 83
214	J102-22	J4-22	TAN	407256	41.5"	CHAN 83 RTN
215	J102-53	J4-23	RED	407256	41.5"	CHAN 84
216	J102-21	J4-24	TAN	407256	41.5"	CHAN 84 RTN
217	J102-52	J4-25	ORN	407256	41.5"	CHAN 85
218	J102-20	J4-26	TAN	407256	41.5"	CHAN 85 RTN
219	J102-51	J4-27	YEL	407256	41.5"	CHAN 86
220	J102-19	J4-28	TAN	407256	41.5"	CHAN 86 RTN
221	J102-50	J4-29	GRN	407256	41.5"	CHAN 87
222	J102-18	J4-30	TAN	407256	41.5"	CHAN 87 RTN
223	J102-49	J4-31	BLU	407256	41.5"	CHAN 88
224	J102-17	J4-32	TAN	407256	41.5"	CHAN 88 RTN
225	J102-48	J4-33	VIO	407256	41.5"	CHAN 89
226	J102-16	J4-34	TAN	407256	41.5"	CHAN 89 RTN
227	J102-47	J4-35	GRY	407256	41.5"	CHAN 90
228	J102-15	J4-36	TAN	407256	41.5"	CHAN 90 RTN
229	J102-46	J4-37	WHT	407256	41.5"	CHAN 91
230	J102-14	J4-38	TAN	407256	41.5"	CHAN 91 RTN
231	J102-45	J4-39	BLK	407256	41.5"	CHAN 92
232	J102-13	J440	TAN	407256	41.5"	CHAN 92 RTN
233	J102-44	J441	BRN	407256	41.5"	CHAN 93
234	J102-12	J442	TAN	407256	41.5"	CHAN 93 RTN
235	J102-43	J443	RED	407256	41.5"	CHAN 94
236	J102-11	J444	TAN	407256	41.5"	CHAN 94 RTN
237	J102-42	J4-45	ORN	407256	41.5"	CHAN 95
238	J102-10	J446	TAN	407256	41.5"	CHAN 95 RTN
239	J102-41	J447	YEL	407256	41.5"	CHAN 96
240	J102-9	J448	TAN	407256	41.5"	CHAN 96 RTN
241	J102-40	J449	GRN	407256	41.5"	EDRVR 06/VEXT 07
242	J102-8	J4-50	TAN	407256	41.5"	EDRVR 06/VEXT 07 RTN
RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718						
DOCUMENT TI'I'LE			CODE NO		DOCUMENT NO.	
HARNESS ASSY, 1260-14,VP90			21793			272
			DRN			SHEET 8 of 9

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 243 \\ & 244 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{J} 102-39 \\ & \mathrm{~J} 102-7 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & J 4-51 \\ & J 4-52 \end{aligned}\right.$	$\begin{array}{\|l} \hline \text { BLU } \\ \text { TAN } \end{array}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	EDRVR 07IVEXT 08 EDRVR 07IVEXT 08 RTN
$\begin{aligned} & 245 \\ & 246 \end{aligned}$	$\begin{array}{\|l\|} \hline J 102-38 \\ J 102-6 \end{array}$	$\begin{array}{\|l\|} \hline J 4-53 \\ J 4-54 \end{array}$	VIO TAN	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	EDRVR 08/VEXT 09 EDRVR 08/VEXT 09 RTN
$\begin{aligned} & 247 \\ & 248 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{J} 102-37 \\ \mathrm{~J} 102-5 \end{array}$		$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	EDRVR 09/VEXT 10 EDRVR 09/VEXT 10 RTN
$\begin{aligned} & 249 \\ & 250 \end{aligned}$	$\begin{array}{\|l\|} \hline J 102-36 \\ \mathrm{~J} 1024 \end{array}$	$\begin{array}{\|l\|} \hline J 4-57 \\ \mathrm{~J} 4-58 \end{array}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	EDRVR 10/VEXT 11 EDRVR 10/VENT 11 RTN
$\begin{aligned} & 251 \\ & 252 \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{J} 102-35 \\ \mathrm{~J} 102-3 \end{array}$	$\begin{aligned} & \mathrm{J} 4-59 \\ & \mathrm{~J} 4-60 \end{aligned}$	$\begin{aligned} & \hline \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407256 \\ & 407256 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	EDRVR 11/VEXT 12 EDRVR 11/VEXT 12 RTN
$\begin{aligned} & 253 \\ & 254 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline J 102-34 \\ J 102-2 \end{array}$	NO CONNECT NO CONNECT				
$\begin{aligned} & 255 \\ & 256 \end{aligned}$	$\begin{array}{\|l\|} \hline J 102-33 \\ J 102-1 \end{array}$	NO CONNECT NO CONNECT				

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,VP90	A	21793	407272	A
	DRN	SHEET 9 of 9		

ENGINEERING PARTS LIST

ITEM	BIN	PART NO.	DESCRIPTION	QTY	REFERENCE
1		407250	CABLE ASSY, IDC, 50-COND, TTI	2	
2		407255	CABLE ASSY, IDC, 60-COND, TTI	2	
3		610777	TIE-CA-LKG-.062-.075	A/R	
4		910541	POLYURETHANE CONFORMAL COAT	A/R	

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TITLE	SIZE.	CODE NO	DOCUMENT NO.	REV					
HARNESS ASSY, 1260-14,TTI	A	21793	407273	A					
	DRN								SHEET 2 of 8

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
	BLK AAx RW Ol (J100)	Uxx-SLOT yy (JI)	CABLE	407273		SYSTEM WIRE LIST
	BLK AAx RW 02 (3101)	Uxx-SLOT yy (J1)	CABLE	407273		
	BLK AAx RW 03 (J102)	Uxx-SLOT yy (J1)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 04 \\ & (\mathrm{J103}) \end{aligned}$	Uxx-SLOT yy (JI)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx Rw } 05 \\ & (J 104) \end{aligned}$	$\begin{aligned} & \text { Uxx-S LOT yy } \\ & \text { (J1) } \end{aligned}$	CABLE	407273		
	BLK AAx RW 06 (J105)	Uxx-S LOT yy (J2)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 07 \\ & (\mathrm{~J} 106) \end{aligned}$	Uxx-SLOT yy (J2)	CABLE	407273		
	BLK AAx RW 08 (J107)	Uxx-SLOT yy (J2)	CABLE	407273		
	BLK AAx RW 09 (J108)	Uxx-SLOT yy (J2)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 10 \\ & (\mathrm{~J} 109) \end{aligned}$	Uxx-SLOT yy (J2)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 11 \\ & (\mathrm{~J} 110) \end{aligned}$	Uxx-SLOT yy (J3)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 12 \\ & (\mathrm{~J} 111) \end{aligned}$	Uxx-SLOT yy (J3)	CABLE	407273		
	BLK AAx RW 13 (J112)	Uxx-SLOT yy (J3)	CABLE	407273		
	BLK AAx RW 14 (J113)	Uxx-SLOT yy (J3)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 15 \\ & (\mathrm{~J} 114) \end{aligned}$	Uxx-SLOT yy (J3)	CABLE	407273		
	BLK AAx RW 16 (J115)	Uxx-SLOT yy (J3)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 17 \\ & (\mathrm{~J} 116) \end{aligned}$	Uxx-SLOT yy (J4)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW Ol } \\ & (\mathrm{J} 117) \end{aligned}$	Uxx-SLOT yy (J4)	CABLE	407273		
	$\begin{aligned} & \text { BLK AAx RW } 02 \\ & (\mathrm{~J} 118) \end{aligned}$	Uxx-SLOT yy (J4)	CABLE	407273		
	BLK AAx RW 03 (J119)	Uxx-SLOT yy (J4)	CABLE	407273		
	BLK AAx RW 04 (J120)	Uxx-SLOT yy (J4)	CABLE	407273		
	BLK Aax RW 05 (J121)	Uxx-SLOT yy (J4)	CABLE	407273		

This system wirelist serves as a template for incorporating this harness assembly into the overall system wirelist. It does not in any way affect the fabrication of this harness assembly.

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
1	J100-1	J1-1	BRN	407250	41.5"	CHAN 01
2	J100-2	J1-2	TAN	407250	41.5"	CHAN 01 RTN
3	J100-3	J1-3	RED	407250	41.5"	CHAN 02
4	J100-4	J1-4	TAN	407250	41.5"	CHAN 02 RTN
5	J100-5	J1-5	ORN	407250	41.5"	CHAN 03
6	J100-6	J1-6	TAN	407250	41.5"	CHAN 03 RTN
7	JJ00-7	J1-7	YEL	407250	41.5"	CHAN 04
8	J100-8	J1-8	TAN	407250	41.5"	CHAN 04 RTN
9	J100-9	J1-9	GRN	407250	41.5"	CHAN 05
10	J100-10	J1-10	TAN	407250	41.5"	CHAN 05 RTN
11	J101-10	J1-11	BLU	407250	41.5"	CHAN 06
12	J101-9	J1-12	TAN	407250	41.5"	CHAN 06 RTN
13	J101-8	J1-13	VIO	407250	41.5"	CHAN 07
14	J101-7	J1-14	TAN	407250	41.5"	CHAN 07 RTN
15	J101-6	J1-15	GRY	407250	41.5"	CHAN 08
16	J101-5	J1-16	TAN	407250	41.5"	CHAN 08 RTN
17	J101-4	J1-17	WHT	407250	41.5"	CHAN 09
18	J101-3	J1-18	TAN	407250	41.5"	CHAN 09 RTN
19	J101-2	J1-19	BLK	407250	41.5"	CHAN 10
20	J101-1	J1-20	TAN	407250	41.5"	CHAN 10 RTN
21	J102-1	J1-21	BRN	407250	41.5"	CHAN 11
22	J102-2	J1-22	TAN	407250	41.5"	CHAN 11 RTN
23	J102-3	J1-23	RED	407250	41.5"	CHAN 12
24	J102-4	J1-24	TAN	407250	41.5"	CHAN 12 RTN
25	J102-5	J1-25	ORN	407250	41.5"	CHAN 13
26	J102-6	J1-26	TAN	407250	41.5"	CHAN 13 RTN
27	J102-7	J1-27	YEL	407250	41.5"	CHAN 14
28	J102-8	J1-28	TAN	407250	41.5"	CHAN 14 RTN
29	J102-9	J1-29	GRN	407250	41.5"	CHAN 15
30	J102-10	J1-30	TAN	407250	41.5"	CHAN 15 RTN
31	J103-10	J1-31	BLU	407250	41.5"	CHAN 16
32	J103-9	J1-32	TAN	407250	41.5"	CHAN 16 RTN
33	J103-8	J1-33	VIO	407250	41.5"	CHAN 17
34	J103-7	J1-34	TAN	407250	41.5"	CHAN 17 RTN
35	J103-6	J1-35	GRY	407250	41.5"	CHAN 18
36	J103-5	J1-36	TAN	407250	41.5"	CHAN 18 RTN
37	J103-4	J1-37	WHT	407250	41.5"	CHAN 19
38	J103-3	J1-38	TAN	407250	41.5"	CHAN 19 RTN
39	J103-2	J1-39	BLK	407250	41.5"	CHAN 20
40	J103-1	J1-40	TAN	407250	41.5"	CHAN 20 RTN
41	J104-1	J1-41	BRN	407250	41.5"	CHAN 21
42	J104-2	J1-42	TAN	407250	41.5"	CHAN 21 RTN
43	J104-3	J1-43	RED	407250	41.5"	CHAN 22
44	J104-4	J1-44	TAN	407250	41.5"	CHAN 22 RTN
45	J104-5	J1-45	ORN	407250	41.5"	CHAN 23
46	J104-6	J1-46	TAN	407250	41.5"	CHAN 23 RTN
47	J104-7	J1-47	YEL	407250	41.5"	CHAN 24
48	J104-8	J1-48	TAN	407250	41.5"	CHAN 24 RTN
49	J104-9	J1-49	GRN	407250	41.5"	BUSY
50	J104-10	J1-50	TAN	407250	41.5"	GND

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'ILE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,TTI	A	21793	407273	A
	DRN		SHEET 4 of 8	

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 51 \\ & 52 \end{aligned}$	$\begin{aligned} & \mathrm{J} 105-1 \\ & \mathrm{~J} 105-2 \end{aligned}$	$\begin{aligned} & 32-1 \\ & 32-2 \end{aligned}$	$\begin{aligned} & \mathrm{BRN} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN2S CHAN 25 RTN
$\begin{aligned} & 53 \\ & 54 \end{aligned}$	$\begin{aligned} & \mathrm{J} 105-3 \\ & \mathrm{J105-4} \end{aligned}$	$\begin{aligned} & 32-3 \\ & 32-4 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 26 \\ & \text { CHAN } 26 \text { RTN } \end{aligned}$
$\begin{aligned} & 55 \\ & 56 \end{aligned}$	$\begin{aligned} & \mathrm{J} 105-5 \\ & \mathrm{~J} 105-6 \end{aligned}$	$\begin{aligned} & 32-5 \\ & 32-6 \end{aligned}$	$\begin{aligned} & \mathrm{ORN} \\ & \mathrm{TAN} \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 27 CHAN 27 RTN
$\begin{aligned} & \hline 57 \\ & 58 \end{aligned}$	$\begin{array}{\|l\|} \hline J 105-7 \\ \mathrm{~J} 105-8 \end{array}$	$\begin{aligned} & 32-7 \\ & 32-8 \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 28 \\ & \text { CHAN } 28 \text { RTN } \end{aligned}$
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|} \hline J 105-9 \\ \mathrm{~J} 105-10 \end{array}$	$\begin{aligned} & \mathrm{J} 2-9 \\ & \mathrm{J2-10} \end{aligned}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 29 \\ & \text { CHAN } 29 \text { RTN } \end{aligned}$
$\begin{aligned} & 61 \\ & 62 \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 106-10 \\ & \mathrm{~J} 106-9 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-11 \\ & \mathrm{J2-12} \end{aligned}$	$\begin{aligned} & \mathrm{BLU} \\ & \mathrm{TAN} \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 30 \\ & \text { CHAN } 30 \text { RTN } \end{aligned}$
$\begin{aligned} & 63 \\ & 64 \end{aligned}$	$\begin{array}{\|l} \mathrm{J} 106-8 \\ \mathrm{~J} 106-7 \end{array}$	$\begin{aligned} & \mathrm{J} 2-13 \\ & \mathrm{J2-14} \end{aligned}$	$\begin{aligned} & \mathrm{VIO} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 31 CHAN 31 RTN
$\begin{aligned} & \hline 65 \\ & 66 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline J 106-6 \\ \mathrm{~J} 106-5 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{J} 2-15 \\ \mathrm{J2-16} \\ \hline \end{array}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline \text { CHAN } 32 \\ & \text { CHAN } 32 \text { RTN } \\ & \hline \end{aligned}$
$\begin{aligned} & \hline 67 \\ & 68 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 106-4 \\ \mathrm{~J} 106-3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J2-17} \\ \mathrm{J2}-18 \\ \hline \end{array}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 33 \\ & \text { CHAN } 33 \text { RTN } \end{aligned}$
$\begin{aligned} & \hline 69 \\ & 70 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 106-2 \\ \mathrm{~J} 106-1 \end{array}$	$\begin{aligned} & \mathrm{J} 2-19 \\ & \mathrm{J2-20} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 34 \\ & \text { CHAN } 34 \text { RTN } \end{aligned}$
$\begin{aligned} & 71 \\ & 72 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 107-1 \\ \mathrm{~J} 107-2 \end{array}$	$\begin{aligned} & \mathrm{J} 2-21 \\ & \mathrm{J2-22} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{BRN} \\ & \mathrm{TAN} \\ & \hline \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 35 CHAN 35 RTN
$\begin{aligned} & 73 \\ & 74 \end{aligned}$	$\begin{aligned} & \mathrm{J} 107-3 \\ & \mathrm{~J} 107-4 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-23 \\ & \mathrm{J2}-24 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 36 CHAN 36 RTN
$\begin{aligned} & 75 \\ & 76 \end{aligned}$	$\begin{aligned} & \mathrm{J} 107-5 \\ & \mathrm{J107-6} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{J2-25} \\ \mathrm{J2-26} \end{array}$	$\begin{aligned} & \mathrm{ORN} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 37 CHAN 37 RTN
$\begin{aligned} & \hline 77 \\ & 78 \end{aligned}$	$\begin{array}{\|l\|} \hline J 107-7 \\ \mathrm{~J} 107-8 \end{array}$	$\begin{aligned} & \mathrm{J} 2-27 \\ & \mathrm{J2}-28 \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 38 CHAN 38 RTN
$\begin{aligned} & \hline 79 \\ & 80 \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 107-9 \\ & \mathrm{J107-10} \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-29 \\ & \mathrm{J2-30} \end{aligned}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 39 CHAN 39 RTN
$\begin{aligned} & 81 \\ & 82 \end{aligned}$	$\begin{array}{\|l\|} \hline J 108-10 \\ \mathrm{~J} 108-9 \end{array}$	$\begin{aligned} & \mathrm{J} 2-31 \\ & \mathrm{J2}-32 \end{aligned}$	$\begin{aligned} & \mathrm{BLU} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 40 \\ & \text { CHAN } 40 \text { RTN } \end{aligned}$
$\begin{aligned} & \hline 83 \\ & 84 \end{aligned}$	$\begin{array}{\|l\|} \hline J 108-8 \\ J 108-7 \end{array}$	$\begin{aligned} & \mathrm{J} 2-33 \\ & \mathrm{J2}-34 \end{aligned}$	$\begin{aligned} & \mathrm{VIO} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 41 CHAN 41 RTN
$\begin{aligned} & \hline 85 \\ & 86 \end{aligned}$	$\begin{array}{\|l\|} \hline J 108-6 \\ J 108-5 \end{array}$	$\begin{aligned} & \mathrm{J} 2-35 \\ & \mathrm{J2}-36 \end{aligned}$	$\begin{aligned} & \mathrm{GRY} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 42 CHAN 42 RTN
$\begin{aligned} & \hline 87 \\ & 88 \end{aligned}$	$\begin{array}{\|l\|} \hline J 108-4 \\ J 108-3 \end{array}$	$\begin{aligned} & \mathrm{J} 2-37 \\ & \mathrm{J2-38} \end{aligned}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 43 CHAN 43 RTN
$\begin{aligned} & \hline 89 \\ & 90 \end{aligned}$	$\begin{array}{\|l\|} \hline J 108-2 \\ \mathrm{~J} 108-1 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J} 2-39 \\ \mathrm{J2-40} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 44 CHAN 44 RTN
$\begin{aligned} & 91 \\ & 92 \end{aligned}$	$\begin{aligned} & \mathrm{J} 109-1 \\ & \mathrm{~J} 109-2 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-41 \\ & \mathrm{J2}-42 \end{aligned}$	$\begin{aligned} & \mathrm{BRN} \\ & \mathrm{TAN} \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 45 \\ & \text { CHAN } 45 \text { RTN } \end{aligned}$
$\begin{aligned} & \hline 93 \\ & 94 \end{aligned}$	$\begin{aligned} & \mathrm{J} 109-3 \\ & \mathrm{~J} 109-4 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-43 \\ & 32-44 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5 " \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 46 \\ & \text { CHAN } 46 \text { RTN } \end{aligned}$
$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & \mathrm{J} 109-5 \\ & \mathrm{J109-6} \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-45 \\ & \mathrm{J2}-46 \end{aligned}$	$\begin{aligned} & \mathrm{ORN} \\ & \mathrm{TAN} \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime} \end{aligned}$	CHAN 47 CHAN 47 RTN
$\begin{aligned} & \hline 97 \\ & 98 \end{aligned}$	$\begin{aligned} & \mathrm{J} 109-7 \\ & \mathrm{~J} 109-8 \end{aligned}$	$\begin{aligned} & \mathrm{J} 2-47 \\ & \mathrm{J2}-48 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{YEL} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407250 \\ & 407250 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 48 \\ & \text { CHAN } 48 \text { RTN } \end{aligned}$

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

| DOCUMENT TTTLE | SIZE. | CODE NO | DOCUMENT NO. | REV |
| :---: | ---: | :---: | :---: | :---: | :---: |
| HARNESS ASSY, 1260-14,TTI | A | 21793 | 407273 | A |
| | DRN | | | SHEET 5 of 8 |

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & 99 \\ & 100 \end{aligned}$	$\begin{array}{\|l\|} \hline J 109-9 \\ J 109-10 \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{J2}-49 \\ & \mathrm{J2-50} \end{aligned}\right.$	$\begin{aligned} & \text { ORN } \\ & \hline \text { TAN } \end{aligned}$	407250	$41.5^{4 \prime}$	CLOCK IN CLOCK IN RTN
$\begin{aligned} & \hline 101 \\ & 102 \end{aligned}$	$\begin{aligned} & \mathrm{J110-1} \\ & \mathrm{~J} 110-2 \end{aligned}$	$\begin{aligned} & 33-1 \\ & 33-2 \end{aligned}$	$\begin{aligned} & \mathrm{BRN} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 49 CHAN 49 RTN
$\begin{aligned} & 103 \\ & 104 \end{aligned}$	$\begin{aligned} & \mathrm{J110-3} \\ & \mathrm{J110-4} \end{aligned}$	$\begin{aligned} & 33-3 \\ & 33-4 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 50 CHAN 50 RTN
$\begin{aligned} & \hline 105 \\ & 106 \end{aligned}$	$\begin{aligned} & \mathrm{J110-5} \\ & \mathrm{J110-6} \end{aligned}$	$\begin{aligned} & 33-5 \\ & 33-6 \end{aligned}$	$\begin{aligned} & \hline \text { ORN } \\ & \hline \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 51 CHAN 51 RTN
$\begin{aligned} & 107 \\ & 108 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J110-7} \\ \mathrm{J110-8} \end{array}$	$\begin{aligned} & 33-7 \\ & 33-8 \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 52 \\ & \text { CHAN } 52 \text { RTN } \end{aligned}$
$\begin{aligned} & 109 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 110-9 \\ & \mathrm{~J} 110-10 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J3-9} \\ \mathrm{J3-10} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 53 CHAN 53 RTN
$\begin{aligned} & 111 \\ & 112 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { J111-10 } \\ \text { J111-9 } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-11} \\ \mathrm{J3-12} \end{array}$	$\begin{aligned} & \text { BLU } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 54 CHAN 54 RTN
$\begin{aligned} & \hline 113 \\ & 114 \end{aligned}$	$\begin{array}{\|l\|} \hline j 111-8 \\ \mathrm{J111-7} \end{array}$	$\begin{array}{\|l\|} \hline J 3-13 \\ \mathrm{J3}-14 \end{array}$	$\begin{aligned} & \text { VIO } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 55 CHAN 55 RTN
$\begin{aligned} & \hline 115 \\ & 116 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline j 111-6 \\ \mathrm{~J} 111-5 \end{array}$	$\begin{aligned} & \mathrm{J3-15} \\ & \mathrm{J3-16} \end{aligned}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 56 CHAN 56 RTN
$\begin{aligned} & \hline 117 \\ & 118 \end{aligned}$	$\begin{aligned} & \mathrm{J111-4} \\ & \mathrm{J111-3} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J3-17} \\ \mathrm{J3}-18 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 57 CHAN 57 RTN
$\begin{aligned} & 119 \\ & 120 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { J111-2 } \\ \text { J111-1 } \end{array}$	$\begin{array}{\|l} \hline \mathrm{J3-19} \\ \mathrm{J3-20} \end{array}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 58 CHAN 58 RTN
$\begin{aligned} & 121 \\ & 122 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 112-1 \\ \mathrm{~J} 112-2 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-21} \\ \mathrm{J3-22} \\ \hline \end{array}$	$\begin{aligned} & \text { BRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 59 CHAN 59 RTN
$\begin{aligned} & 123 \\ & 124 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 112-3 \\ \mathrm{~J} 112-4 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-23} \\ \mathrm{J3}-24 \\ \hline \end{array}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 60 \\ & \text { CHAN } 60 \text { RTN } \end{aligned}$
$\begin{aligned} & 125 \\ & 126 \end{aligned}$	$\begin{aligned} & \mathrm{J112-5} \\ & \mathrm{J112-6} \end{aligned}$	$\begin{array}{\|l\|} \hline 33-25 \\ \mathrm{J3}-26 \end{array}$	$\begin{aligned} & \hline \text { ORN } \\ & \hline \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 61 CHAN 61 RTN
$\begin{aligned} & \hline 127 \\ & 128 \end{aligned}$	$\begin{array}{\|l\|} \hline J 112-7 \\ \mathrm{~J} 112-8 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-27} \\ \mathrm{J3-28} \end{array}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 62 CHAN 62 RTN
$\begin{aligned} & 129 \\ & 130 \end{aligned}$	$\begin{array}{\|l\|} \hline J 112-9 \\ \mathrm{J112-10} \end{array}$	$\begin{array}{\|l} \hline 33-29 \\ \mathrm{J3}-30 \\ \hline \end{array}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 63 \\ & \text { CHAN } 63 \text { RTN } \end{aligned}$
$\begin{aligned} & 131 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{J} 113-10 \\ & \mathrm{~J} 113-9 \end{aligned}$	$\begin{array}{\|l\|} \hline 33-31 \\ \mathrm{J3-32} \end{array}$	$\begin{aligned} & \text { BLU } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 64 \\ & \text { CHAN } 64 \text { RTN } \end{aligned}$
$\begin{aligned} & 133 \\ & 134 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J113-8} \\ \mathrm{~J} 113-7 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 33-33 \\ \mathrm{J3}-34 \\ \hline \end{array}$	$\begin{aligned} & \text { VIO } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 65 CHAN 65 RTN
$\begin{aligned} & 135 \\ & 136 \end{aligned}$	$\begin{array}{\|l\|} \hline j 113-6 \\ \mathrm{~J} 113-5 \end{array}$	$\begin{array}{\|l\|} \hline 33-35 \\ \mathrm{J3-36} \end{array}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 66 CHAN 66 RTN
$\begin{aligned} & 137 \\ & 138 \end{aligned}$	$\begin{aligned} & \mathrm{J113-4} \\ & \mathrm{J113-3} \end{aligned}$	$\begin{array}{\|l\|} \hline 33-37 \\ \mathrm{J3-38} \end{array}$	$\begin{aligned} & \hline \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 67 CHAN 67 RTN
$\begin{aligned} & 139 \\ & 140 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J} 113-2 \\ \mathrm{~J} 113-1 \end{array}$	$\begin{array}{\|l\|l\|} \hline J 3-39 \\ \mathrm{J3}-40 \end{array}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 68 CHAN 68 RTN
$\begin{aligned} & \hline 141 \\ & 142 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J114-1} \\ \mathrm{J114-2} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-41} \\ \mathrm{J3}-42 \\ \hline \end{array}$	$\begin{aligned} & \text { BRN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 69 \\ & \text { CHAN } 69 \text { RTN } \end{aligned}$
$\begin{aligned} & \hline 143 \\ & 144 \end{aligned}$	$\begin{array}{\|l\|} \hline j 114-3 \\ \text { J114-4 } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-43} \\ \mathrm{J3-44} \\ \hline \end{array}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{"} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 70 \\ & \text { CHAN } 70 \text { RTN } \end{aligned}$
$\begin{aligned} & \hline 145 \\ & 146 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline j 114-5 \\ \mathrm{J114-6} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{J3-45} \\ \mathrm{J3-46} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { ORN } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 71 \\ & \text { CHAN } 71 \text { RTN } \end{aligned}$

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'ILE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,TTI	A	21793	407273	A
	DRN		SHEET 6 of 8	

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
147 148	$\begin{aligned} & \mathrm{J} 114-7 \\ & \mathrm{~J} 114-8 \end{aligned}$	$\begin{array}{\|l\|} \hline J 3-47 \\ \mathrm{J3-48} \end{array}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 72 CHAN 72 RTN
149	J114-9	J3-49	GRN	407255	41.5"	EDRVR 00
150	J114-10	J3-50	TAN	407255	41.5"	EDRVR 00 RTN
151	J115-10	J3-51	BLU	407255	41.5"	EDRVR 01
152	J115-9	J3-52	TAN	407255	41.5"	EDRVR 01 RTN
153	J115-8	J3-53	VIO	407255	41.5"	EDRVR 02
154	J115-7	J3-54	TAN	407255	41.5"	EDRVR 02 RTN
155	J115-6	J3-55	GRY	407255	41.5"	EDRVR 03
156	J115-5	J3-56	TAN	407255	41.5"	EDRVR 03 RTN
157	J115-4	J3-57	WHT	407255	41.5"	EDRVR 04
158	J115-3	J3-58	TAN	407255	41.5"	EDRVR 04 RTN
159	J115-2	J3-59	BLK	407255	41.5"	EDRVR 05
160	J115-1	J3-60	TAN	407255	41.5"	EDRVR 05 RTN
161	J116-1	J4-1	BRN	407255	41.5"	CHAN 73
162	J116-2	J4-2	TAN	407255	41.5"	CHAN 73 RTN
163	J116-3	J4-3	RED	407255	41.5"	CHAN 74
164	J116-4	J4-4	TAN	407255	41.5"	CHAN 74 RTN
165	J116-5	J4-5	ORN	407255	41.5"	CHAN 75
166	J116-6	J4-6	TAN	407255	41.5"	CHAN 75 RTN
167	J116-7	J4-7	YEL	407255	41.5"	CHAN 76
168	J116-8	J4-8	TAN	407255	41.5"	CHAN 76 RTN
169	J116-9	J4-9	GRN	407255	41.5"	CHAN 77
170	J116-10	J4-10	TAN	407255	41.5"	CHAN 77 RTN
171	J117-10	J4-11	BLU	407255	41.5"	CHAN 78
172	J117-9	J4-12	TAN	407255	41.5"	CHAN 78 RTN
173	J117-8	J4-13	VIo	407255	41.5"	CHAN 79
174	J117-7	J4-14	TAN	407255	41.5"	CHAN 79 RTN
175	J117-6	J4-15	GRY	407255	41.5"	CHAN 80
176	J117-5	J4-16	TAN	407255	41.5"	CHAN 80 RTN
177	J117-4	J4-17	WHT	407255	41.5"	CHAN 81
178	J117-3	J4-18	TAN	407255	41.5"	CHAN 81 RTN
179	J117-2	J4-19	BLK	407255	41.5"	CHAN 82
180	J117-1	J4-20	TAN	407255	41.5"	CHAN 82 RTN
181	J118-1	J4-21	BRN	407255	41.5"	CIIAN 83
182	J118-2	J4-22	TAN	407255	41.5"	CHAN 83 RTN
183	J118-3	J4-23	RED	407255	41.5"	CHAN 84
184	J118-4	J4-24	TAN	407255	41.5"	CHAN 84 RTN
185	J118-5	J4-25	ORN	407255	41.5"	CHAN 85
186	J118-6	J4-26	TAN	407255	41.5"	CHAN 85 RTN
187	J118-7	J4-27	YEL	407255	41.5"	CHAN 86
188	J118-8	J4-28	TAN	407255	41.5"	CHAN 86 RTN
189	J118-9	J4-29	GRN	407255	41.5"	CHAN 87
190	J118-10	J4-30	TAN	407255	41.5"	CHAN 87 RTN
191	J119-10	J4-31	BLU	407255	41.5"	CHAN 88
192	J119-9	J4-32	TAN	407255	41.5"	CHAN 88 RTN
193	J119-8	J4-33	VII	407255	41.5"	CHAN 89
194	J119-7	J4-34	TAN	407255	41.5"	CHAN 89 RTN

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,TTI	A	21793	407273	A
	DRN	SHEET 7 of 8		

ENGINEERING WIRE LIST

WIRE	FROM	TO	TYPE	PART \#	WIRE LEN	REFERENCE
$\begin{aligned} & \hline 195 \\ & 196 \end{aligned}$	$\begin{aligned} & \mathrm{J119-6} \\ & \mathrm{J119-5} \end{aligned}$	$\begin{array}{\|l\|} \hline 34-35 \\ 34-36 \end{array}$	$\begin{aligned} & \mathrm{GRY} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 90 \\ & \text { CHAN } 90 \text { RTN } \end{aligned}$
$\begin{aligned} & 197 \\ & 198 \end{aligned}$	$\begin{aligned} & \mathrm{J119-4} \\ & \mathrm{~J} 119-3 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 34-37 \\ 34-38 \\ \hline \end{array}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	CHAN 91 CHAN 91 RTN
$\begin{aligned} & \hline 199 \\ & 200 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{J119-2} \\ \mathrm{~J} 119-1 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{J4-39} \\ & \mathrm{J4}-40 \end{aligned}$	$\begin{aligned} & \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { CHAN } 92 \\ & \text { CHAN } 92 \text { RTN } \end{aligned}$
$\begin{aligned} & 201 \\ & 202 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 120-1 \\ & \mathrm{~J} 120-2 \end{aligned}$	$\begin{aligned} & 34-41 \\ & 34-42 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { BRN } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 93 \\ & \text { CHAN } 93 \text { RTN } \end{aligned}$
$\begin{aligned} & 203 \\ & 204 \end{aligned}$	$\begin{aligned} & \mathrm{J} 120-3 \\ & \mathrm{~J} 120-4 \end{aligned}$	$\begin{aligned} & \mathrm{J} 4-43 \\ & \mathrm{J4}-44 \end{aligned}$	$\begin{aligned} & \text { RED } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	CHAN 94 CHAN 94 RTN
$\begin{aligned} & 205 \\ & 206 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 120-5 \\ & \mathrm{~J} 120-6 \end{aligned}$	$\begin{array}{\|l\|} \hline 34-45 \\ 34-46 \end{array}$	$\begin{aligned} & \hline \text { ORN } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 95 \\ & \text { CHAN } 95 \text { RTN } \end{aligned}$
$\begin{aligned} & 207 \\ & 208 \end{aligned}$	$\begin{aligned} & \mathrm{J120-7} \\ & \mathrm{~J} 120-8 \end{aligned}$	$\begin{aligned} & \mathrm{J} 4-47 \\ & \mathrm{J4}-48 \end{aligned}$	$\begin{aligned} & \text { YEL } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { CHAN } 96 \\ & \text { CHAN } 96 \text { RTN } \end{aligned}$
$\begin{aligned} & 209 \\ & 210 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline J 120-9 \\ \mathrm{~J} 120-10 \end{array}$	$\begin{aligned} & 34-49 \\ & 34-50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { GRN } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5 " \end{aligned}$	$\begin{aligned} & \text { EDRYR } 06 \\ & \text { EDRVR } 06 \text { RTN } \end{aligned}$
$\begin{aligned} & 211 \\ & 212 \end{aligned}$	$\begin{array}{\|l\|} \hline J 121-10 \\ \hline \mathrm{~J} 121-9 \end{array}$	$\begin{aligned} & \mathrm{J} 4-51 \\ & \mathrm{J4-52} \end{aligned}$	$\begin{aligned} & \mathrm{BLU} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { EDRVR } 07 \\ & \text { EDRVR } 07 \text { RTN } \end{aligned}$
$\begin{aligned} & 213 \\ & 214 \end{aligned}$	$\begin{aligned} & \hline J 121-8 \\ & \mathrm{~J} 121-7 \end{aligned}$	$\begin{array}{\|l\|} \hline 34-53 \\ 34-54 \end{array}$	$\begin{aligned} & \mathrm{VIO} \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { EDRVR } 08 \\ & \text { EDRVR } 08 \text { RTN } \end{aligned}$
$\begin{aligned} & 215 \\ & 216 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 121-6 \\ & \mathrm{~J} 121-5 \end{aligned}$	$\begin{aligned} & 34-55 \\ & 34-56 \end{aligned}$	$\begin{aligned} & \text { GRY } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { EDRVR } 09 \\ & \text { EDRVR } 09 \text { RTN } \end{aligned}$
$\begin{aligned} & 217 \\ & 218 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline J 121-4 \\ J 121-3 \\ \hline \end{array}$	$\begin{aligned} & \hline 34-57 \\ & 34-58 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WHT } \\ & \text { TAN } \\ & \hline \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \\ & \hline \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	EDRYR 10 EDRVR 10 RTN
$\begin{aligned} & 219 \\ & 220 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} 121-2 \\ & \mathrm{~J} 121-1 \end{aligned}$	$\begin{aligned} & 34-59 \\ & 34-60 \end{aligned}$	$\begin{aligned} & \hline \text { BLK } \\ & \text { TAN } \end{aligned}$	$\begin{aligned} & 407255 \\ & 407255 \end{aligned}$	$\begin{aligned} & 41.5^{\prime \prime} \\ & 41.5^{\prime \prime} \end{aligned}$	EDRVR 11 EDRVR 11 RTN

RACAL Instruments, Inc., 4 Goodyear St., Irvine, CA 92718

DOCUMENT TI'I'LE	SIZE.	CODE NO	DOCUMENT NO.	REV
HARNESS ASSY, 1260-14,TTI	A	21793	407273	A
	DRN	SHEET 8 of 8		

This page was left intentionally blank.

Chapter 5

PRODUCT SUPPORT

Product Support

EADS North America Defense Test and Services, Inc. has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262. If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

When sending your instrument in for repair, complete the form in the back of this manual.

For worldwide support and the office closest to your facility, refer to the website for the most complete information http://www.eadsnadefense.com.

Reshipment Instructions

Use the original packing material when returning the 1260-14C to EADS North America Defense Test and Services, Inc. for calibration or servicing. The original shipping container and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact EADS North America Defense Test and Services, Inc. Customer Service at 1-800-722-3262 for information.

REPAIR AND CALIBRATION REQUEST FORM

To allow us to better understand your repair requests, we suggest you use the following outline when calling and include a copy with your instrument to be sent to the EADS North America Defense Test and Service, Inc. Repair Facility.

Model	Date	
Company Name	_Purchase Order \#	
Billing Address		
		City
State/Province	Zip/Postal Code	Country
Shipping Address		
		City
State/Province	Zip/Postal Code	Country
Technical Contact	Phone Number ()	
Purchasing Contact	Phone Number ()	

2. If problem is occurring when unit is in remote, please list the program strings used and the controller type.
3. Please give any additional information you feel would be beneficial in facilitating a faster repair time (i.e., modifications, etc.)
\qquad
\qquad
4. Is calibration data required? Yes No (please circle one)

Call before shipping Ship instruments to nearest support office.
Note: We do not accept "collect" shipments.

